1
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2024.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2025.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Spiropoulos J, Lockey R, Beck KE, Vickery C, Holder TM, Thorne L, Arnold M, Andreoletti O, Simmons MM, Terry LA. Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures. Transbound Emerg Dis 2019; 66:1993-2001. [PMID: 31111687 DOI: 10.1111/tbed.13247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 11/28/2022]
Abstract
Prions are highly resistant to the decontamination procedures normally used to inactivate conventional pathogens. This is a challenging problem not only in the medical and veterinary fields for minimizing the risk of transmission from potentially infective sources but also for ensuring the safe disposal or subsequent use of animal by-products. Specific pressure autoclaving protocols were developed for this purpose, but different strains of prions have been reported to have differing resistance patterns to established prion decontamination procedures, and as additional TSE strains are identified it is necessary to determine the effectiveness of such procedures. In this study we assessed the efficacy of sterilization using the EU recommended autoclave procedure for prions (133°C, 3 Bar for 20 min) on the atypical or Nor98 (AS/Nor98) scrapie strain of sheep and goats. Using a highly sensitive murine mouse model (tg338) that overexpresses ovine PrPC , we determined that this method of decontamination reduced the infectivity titre by 1010 . Infectivity was nonetheless still detected after applying the recommended autoclaving protocol. This shows that AS/Nor98 can survive the designated legislative decontamination conditions, albeit with a significant decrease in titre. The infectivity of a classical scrapie isolate subjected to the same decontamination conditions was reduced by 106 suggesting that the AS/Nor98 isolate is less sensitive to decontamination than the classical scrapie source.
Collapse
Affiliation(s)
| | - Richard Lockey
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Katy E Beck
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Chris Vickery
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Thomas M Holder
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Mark Arnold
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | - Linda A Terry
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| |
Collapse
|
4
|
Gielbert A, Thorne JK, Plater JM, Thorne L, Griffiths PC, Simmons MM, Cassar CA. Molecular characterisation of atypical BSE prions by mass spectrometry and changes following transmission to sheep and transgenic mouse models. PLoS One 2018; 13:e0206505. [PMID: 30408075 PMCID: PMC6224059 DOI: 10.1371/journal.pone.0206505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022] Open
Abstract
The prion hypothesis proposes a causal relationship between the misfolded prion protein (PrPSc) molecular entity and the disease transmissible spongiform encephalopathy (TSE). Variations in the conformation of PrPSc are associated with different forms of TSE and different risks to animal and human health. Since the discovery of atypical forms of bovine spongiform encephalopathy (BSE) in 2003, scientists have progressed the molecular characterisation of the associated PrPSc in order to better understand these risks, both in cattle as the natural host and following experimental transmission to other species. Here we report the development of a mass spectrometry based assay for molecular characterisation of bovine proteinase K (PK) treated PrPSc (PrPres) by quantitative identification of its N-terminal amino acid profiles (N-TAAPs) and tryptic peptides. We have applied the assay to classical, H-type and L-type BSE prions purified from cattle, transgenic (Tg) mice expressing the bovine (Tg110 and Tg1896) or ovine (TgEM16) prion protein gene, and sheep brain. We determined that, for classical BSE in cattle, the G96 N-terminal cleavage site dominated, while the range of cleavage sites was wider following transmission to Tg mice and sheep. For L-BSE in cattle and Tg bovinised mice, a C-terminal shift was identified in the N-TAAP distribution compared to classical BSE, consistent with observations by Western blot (WB). For L-BSE transmitted to sheep, both N-TAAP and tryptic peptide profiles were found to be changed compared to cattle, but less so following transmission to Tg ovinised mice. Relative abundances of aglycosyl peptides were found to be significantly different between the atypical BSE forms in cattle as well as in other hosts. The enhanced resolution provided by molecular analysis of PrPres using mass spectrometry has improved insight into the molecular changes following transmission of atypical BSE to other species.
Collapse
Affiliation(s)
- Adriana Gielbert
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
- * E-mail:
| | - Jemma K. Thorne
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Jane M. Plater
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Leigh Thorne
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Peter C. Griffiths
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Marion M. Simmons
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Claire A. Cassar
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| |
Collapse
|
5
|
Does the Presence of Scrapie Affect the Ability of Current Statutory Discriminatory Tests To Detect the Presence of Bovine Spongiform Encephalopathy? J Clin Microbiol 2015; 53:2593-604. [PMID: 26041899 DOI: 10.1128/jcm.00508-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Current European Commission (EC) surveillance regulations require discriminatory testing of all transmissible spongiform encephalopathy (TSE)-positive small ruminant (SR) samples in order to classify them as bovine spongiform encephalopathy (BSE) or non-BSE. This requires a range of tests, including characterization by bioassay in mouse models. Since 2005, naturally occurring BSE has been identified in two goats. It has also been demonstrated that more than one distinct TSE strain can coinfect a single animal in natural field situations. This study assesses the ability of the statutory methods as listed in the regulation to identify BSE in a blinded series of brain samples, in which ovine BSE and distinct isolates of scrapie are mixed at various ratios ranging from 99% to 1%. Additionally, these current statutory tests were compared with a new in vitro discriminatory method, which uses serial protein misfolding cyclic amplification (sPMCA). Western blotting consistently detected 50% BSE within a mixture, but at higher dilutions it had variable success. The enzyme-linked immunosorbent assay (ELISA) method consistently detected BSE only when it was present as 99% of the mixture, with variable success at higher dilutions. Bioassay and sPMCA reported BSE in all samples where it was present, down to 1%. sPMCA also consistently detected the presence of BSE in mixtures at 0.1%. While bioassay is the only validated method that allows comprehensive phenotypic characterization of an unknown TSE isolate, the sPMCA assay appears to offer a fast and cost-effective alternative for the screening of unknown isolates when the purpose of the investigation was solely to determine the presence or absence of BSE.
Collapse
|