1
|
Sathyanarayana S, Pavese N, Ledingham D. The cholinergic system in dementia with Lewy bodies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:231-245. [PMID: 40340064 DOI: 10.1016/b978-0-443-19088-9.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Dementia with Lewy bodies (DLB) is a progressive neurodegenerative disorder pathologically characterized by the presence of neuronal intracytoplasmic inclusions known as Lewy bodies. Core clinical features include fluctuating cognitive impairment, recurrent visual hallucinations, REM sleep behavior disorder, and Parkinsonism. Cholinergic dysfunction is implicated in many of the symptoms of DLB, based on both pathologic and functional imaging studies, as well as the clear symptomatic response of cognitive and behavioral symptoms to drugs that modulate the cholinergic system. In this chapter, we will review and discuss the evidence for cholinergic dysfunction in DLB and its clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sahana Sathyanarayana
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - David Ledingham
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, United Kingdom; Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
2
|
Chen Y, Liang S, Wu H, Deng S, Wang F, Lunzhu C, Li J. Postoperative delirium in geriatric patients with hip fractures. Front Aging Neurosci 2022; 14:1068278. [PMID: 36620772 PMCID: PMC9813601 DOI: 10.3389/fnagi.2022.1068278] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Postoperative delirium (POD) is a frequent complication in geriatric patients with hip fractures, which is linked to poorer functional recovery, longer hospital stays, and higher short-and long-term mortality. Patients with increased age, preoperative cognitive impairment, comorbidities, perioperative polypharmacy, and delayed surgery are more prone to develop POD after hip fracture surgery. In this narrative review, we outlined the latest findings on postoperative delirium in geriatric patients with hip fractures, focusing on its pathophysiology, diagnosis, prevention, and treatment. Perioperative risk prediction, avoidance of certain medications, and orthogeriatric comprehensive care are all examples of effective interventions. Choices of anesthesia technique may not be associated with a significant difference in the incidence of postoperative delirium in geriatric patients with hip fractures. There are few pharmaceutical measures available for POD treatment. Dexmedetomidine and multimodal analgesia may be effective for managing postoperative delirium, and adverse complications should be considered when using antipsychotics. In conclusion, perioperative risk intervention based on orthogeriatric comprehensive care is the most effective strategy for preventing postoperative delirium in geriatric patients with hip fractures.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuai Liang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huiwen Wu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shihao Deng
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Fangyuan Wang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ciren Lunzhu
- Department of Orthopedics, Shannan City People’s Hospital, Shannan, China
| | - Jun Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China,Institute of Orthopedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China,*Correspondence: Jun Li,
| |
Collapse
|
3
|
Increased Serum Neuropeptide Galanin Level Is a Predictor of Cognitive Dysfunction in Patients with Hip Fracture. DISEASE MARKERS 2021; 2021:9141978. [PMID: 34925648 PMCID: PMC8683191 DOI: 10.1155/2021/9141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Background Hip fracture is a common occurrence in elderly populations and is frequently followed by various levels of cognitive dysfunction, leading to adverse functional outcomes. Risk stratification of hip fracture patients to identify high-risk subsets can enable improved strategies to mitigate cognitive complications. The neuropeptide galanin has multiple neurological functions, and altered levels are documented in dementia-type and depression disorders. The present study investigated the association of serum neuropeptide galanin levels in hip fracture patients with the occurrence of cognitive dysfunction during the first week of admission. Methods 276 hip fracture patients without preexisting delirium, cognitive impairment, or severe mental disorders were included in a cross-sectional study. Serum galanin levels were assessed by ELISA on the second day of admission. Routine clinical and laboratory variables were documented. MoCA was performed within 1 week, and those with a score < 26 were categorized with “cognitive decline.” Inferential statistics including multiple linear regression analysis were applied to determine the association of serum galanin level and cognitive status. Results 141 patients were categorized with “cognitive decline,” and 135 patients were categorized as “cognitively normal.” Serum galanin was highly significantly increased in the “cognitive decline” group (34.2 ± 4.8, pg/ml) compared to the “cognitively normal” group (28.9 ± 3.7, pg/ml) and showed significant negative correlation with MoCA scores (r = −0.229, p = 0.016). Regression analysis showed serum galanin as the sole significant independent predictor of lower MoCA scores (β = 0.231, p = 0.035) while age, gender, blood pressure, cholesterol, and blood glucose levels had no significant association. Conclusion Higher serum galanin predicted the development of cognitive dysfunction and worse MoCA scores in a cohort of hip fracture patients without preexisting cognitive impairment or delirium at admission, thus warranting large-scale studies investigating galanin as a candidate biomarker to identify hip fracture patients at risk of cognitive decline.
Collapse
|
4
|
Liu AKL, Gentleman SM. The diagonal band of Broca in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:175-187. [PMID: 34225961 DOI: 10.1016/b978-0-12-819975-6.00009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The diagonal band of Broca (DBB) contains the second largest cholinergic cell group in the human brain, known as the nucleus of the vertical limb of the DBB (nvlDBB). It has major projections to the hippocampus, but it is often underinvestigated, partly due to its ill-defined anatomical boundaries and hence the difficulty of reliable sampling. In this chapter, we have reviewed the historical literature to reestablish the anatomy of the nvlDBB, distinguishing it from neighboring basal forebrain cholinergic nuclei. Although varying degrees of neuronal loss in the nvlDBB have been reported in a range of neurological disorders, and in the aged brain, the significant nvlDBB cholinergic neuronal loss reported in Lewy body dementias is of particular interest. Retrograde tracer study in rodents has demonstrated reciprocal connections between the DBB and the hippocampal CA2 subfield, an area particularly susceptible to Lewy pathologies. Previous functional studies have demonstrated that the nvlDBB is particularly involved in memory retrieval, a cognitive domain severely affected in Lewy body disorders. Based on these observations, we propose an anatomical and functional connection between the cholinergic component of the nvlDBB (Ch2) and the hippocampal CA2.
Collapse
Affiliation(s)
- Alan King Lun Liu
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steve M Gentleman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
6
|
Keszler G, Molnár Z, Rónai Z, Sasvári-Székely M, Székely A, Kótyuk E. Association between anxiety and non-coding genetic variants of the galanin neuropeptide. PLoS One 2019; 14:e0226228. [PMID: 31881033 PMCID: PMC6934320 DOI: 10.1371/journal.pone.0226228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression. Methods Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5’ or 3’ flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region. Results and conclusions A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3’ untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05±4.0 vs 6.15±.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, η2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated.
Collapse
Affiliation(s)
- Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Molnár
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kótyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Alexandris AS, Walker L, Liu AKL, McAleese KE, Johnson M, Pearce RKB, Gentleman SM, Attems J. Cholinergic deficits and galaninergic hyperinnervation of the nucleus basalis of Meynert in Alzheimer's disease and Lewy body disorders. Neuropathol Appl Neurobiol 2019; 46:264-278. [PMID: 31454423 DOI: 10.1111/nan.12577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022]
Abstract
AIMS Galanin is a highly inducible neuroprotective neuropeptide and in Alzheimer's disease (AD), a network of galaninergic fibres has been reported to hypertrophy and hyperinnervate the surviving cholinergic neurons in the basal forebrain. We aimed to determine (i) the extent of galanin hyperinnervation in patients with AD and Lewy body disease and (ii) whether galanin expression relates to the neuropathological burden and cholinergic losses. METHODS Galanin immunohistochemistry was carried out in the anterior nucleus basalis of Meynert of 27 Parkinson's disease (PD) cases without cognitive impairment (mild cognitive impairment [MCI]), 15 with PD with MCI, 42 with Parkinson's disease dementia (PDD), 12 with Dementia with Lewy bodies (DLB), 19 with AD, 12 mixed AD/DLB and 16 controls. Galaninergic innervation of cholinergic neurons was scored semiquantitatively. For a subgroup of cases (n = 60), cholinergic losses were determined from maximum densities of choline acetyltransferase positive (ChAT+ve) neurons and their projection fibres. Quantitative data for α-synuclein, amyloid beta and tau pathology were obtained from tissue microarrays covering cortical/subcortical regions. RESULTS Significant losses of cholinergic neurons and their projection fibres were observed across all diseases. Galaninergic hyperinnervation was infrequent and particularly uncommon in established AD and DLB. We found that hyperinnervation frequencies are significantly higher in the transition between PD without MCI to PDD and that higher burdens of co-existent AD pathology impair this galaninergic response. CONCLUSIONS Our results suggest that galanin upregulation represents an intrinsic response early in Lewy body diseases but which fails with increasing burdens of AD related pathology.
Collapse
Affiliation(s)
- A S Alexandris
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - A K L Liu
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - K E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - M Johnson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - R K B Pearce
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - S M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - J Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
9
|
Liu AKL, Lim EJ, Ahmed I, Chang RCC, Pearce RKB, Gentleman SM. Review: Revisiting the human cholinergic nucleus of the diagonal band of Broca. Neuropathol Appl Neurobiol 2018; 44:647-662. [PMID: 30005126 PMCID: PMC6282557 DOI: 10.1111/nan.12513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Although the nucleus of the vertical limb of the diagonal band of Broca (nvlDBB) is the second largest cholinergic nucleus in the basal forebrain, after the nucleus basalis of Meynert, it has not generally been a focus for studies of neurodegenerative disorders. However, the nvlDBB has an important projection to the hippocampus and discrete lesions of the rostral basal forebrain have been shown to disrupt retrieval memory function, a major deficit seen in patients with Lewy body disorders. One reason for its neglect is that the anatomical boundaries of the nvlDBB are ill defined and this area of the brain is not part of routine diagnostic sampling protocols. We have reviewed the history and anatomy of the nvlDBB and now propose guidelines for distinguishing nvlDBB from other neighbouring cholinergic cell groups for standardizing future clinicopathological work. Thorough review of the literature regarding neurodegenerative conditions reveals inconsistent results in terms of cholinergic neuronal loss within the nvlDBB. This is likely to be due to the use of variable neuronal inclusion criteria and omission of cholinergic immunohistochemical markers. Extrapolating from those studies showing a significant nvlDBB neuronal loss in Lewy body dementia, we propose an anatomical and functional connection between the cholinergic component of the nvlDBB (Ch2) and the CA2 subfield in the hippocampus which may be especially vulnerable in Lewy body disorders.
Collapse
Affiliation(s)
- A K L Liu
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - E J Lim
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - I Ahmed
- Department of Eye Pathology, Institute of Ophthalmology, University College London, London, UK
| | - R C-C Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - R K B Pearce
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - S M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
11
|
Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotox Res 2017; 34:16-31. [PMID: 29218504 DOI: 10.1007/s12640-017-9846-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, while being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilizing the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, and increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin-lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration.
Collapse
|
12
|
Fang P, Yu M, Wan D, Zhang L, Han L, Shen Z, Shi M, Zhu Y, Zhang Z, Bo P. Regulatory effects of galanin system on development of several age-related chronic diseases. Exp Gerontol 2017; 95:88-97. [PMID: 28450241 DOI: 10.1016/j.exger.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
Age is a major risk factor for developing chronic diseases, including type 2 diabetes, depression and Alzheimer's disease. The rapidly increase in the morbidity of these age-related chronic diseases is becoming a global problem. Although our understanding of these age-related diseases has tremendously been improved in recent years, certain aspects of their etiology and relative regulatory factors still remain elusive to clinicians and researchers. Emerging evidences suggest that neuropeptide galanin is involved in the pathogenesis of type 2 diabetes, depression and Alzheimer's disease. This article summarized relevant results of our and others studies to highlight the relationship between the galanin system and these age-related chronic diseases. On the one hand, a high galanin expression was found in subjects with type 2 diabetes, depression and Alzheimer's disease. On the other hand, current data suggest that galanin and its agonists (M617, M1145 and M1153) manifest the characters of anti-insulin resistance, anti-Alzheimer's disease and ameliorate or reinforce depression-like behavior. Specially, activation of GAL2 can alleviate those disease features in human and rodent models. These are helpful for us to understand the roles of galanin system in the pathogenesis of these age-related chronic diseases and to provide useful hints for the development of novel approaches to treat these complex diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China,; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Dang Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Long Han
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Zhongqi Shen
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
13
|
Allaway KC, Machold R. Developmental specification of forebrain cholinergic neurons. Dev Biol 2016; 421:1-7. [PMID: 27847324 DOI: 10.1016/j.ydbio.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/17/2023]
Abstract
Striatal cholinergic interneurons and basal forebrain cholinergic projection neurons, which together comprise the forebrain cholinergic system, regulate attention, memory, reward pathways, and motor activity through the neuromodulation of multiple brain circuits. The importance of these neurons in the etiology of neurocognitive disorders has been well documented, but our understanding of their specification during embryogenesis is still incomplete. All forebrain cholinergic projection neurons and interneurons appear to share a common developmental origin in the embryonic ventral telencephalon, a region that also gives rise to GABAergic projection neurons and interneurons. Significant progress has been made in identifying the key intrinsic and extrinsic factors that promote a cholinergic fate in this precursor population. However, how cholinergic interneurons and projection neurons differentiate from one another during development, as well as how distinct developmental programs contribute to heterogeneity within those two classes, is not yet well understood. In this review we summarize the transcription factors and signaling molecules known to play a role in the specification and early development of striatal and basal forebrain cholinergic neurons. We also discuss the heterogeneity of these populations and its possible developmental origins.
Collapse
Affiliation(s)
- Kathryn C Allaway
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Robert Machold
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|