1
|
Zahid A, Wszolek ZK, Alchaki AR. A 43-year-old female with personality changes and alien limb. Oxf Med Case Reports 2025; 2025:omaf038. [PMID: 40443872 PMCID: PMC12118061 DOI: 10.1093/omcr/omaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/28/2024] [Accepted: 02/21/2025] [Indexed: 06/02/2025] Open
Abstract
Colony stimulating factor-1 receptor (CSF1R) encodes for a tyrosine kinase receptor expressed on microglia. CSF1R related disorder is a devastating autosomal dominant leukoencephalopathy caused by CSF1R with variable penetrance in adults. It remains significantly underdiagnosed or misdiagnosed. We report a case of a 43-year-old woman with an insidious onset of neurocognitive decline, alien limb phenomenon, and personality changes over 1 year. In this report we will discuss the clinical approach, differential diagnosis, investigation, and available treatment options for CSF1R related disorder.
Collapse
Affiliation(s)
- Anza Zahid
- Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | | | - Abdul R Alchaki
- Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
- Division of Neuroimmunology, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
2
|
Mahale RR, Padmanabha H, Mailankody P. CSF1R-related disorder: A clinical, imaging and genetic profile review. Neurol Sci 2025:10.1007/s10072-025-08146-2. [PMID: 40146342 DOI: 10.1007/s10072-025-08146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R) -related disorder (CSF1R-RD) is a primary microgliopathy with a distinct clinical, imaging and genetic profile. OBJECTIVE Description of the clinical, imaging and genetic profile of CSF1R-RD and comparison of Indian cohort with Asian, European and American cohort. METHODS Report of 2 cases of CSF1R-RD and review of reported cases of genetically confirmed CSF1R-RD since 2012 from Indian, Asian, European and American cohorts. RESULTS Two patients were females with age at onset at 40 and 42 years. The duration of symptoms was 2 and 5 years. Both had spasticity, cognitive impairment and psychiatric disturbances. Brain imaging showed hyperintensities in the cerebral white mater involving deep and periventricular white mater with diffusion restriction in one patient. There was diffuse cerebral and corpus callosum atrophy. Genetics showed heterozygous missense variants in exon 18 of the CSF1R gene in both patients. The Indian cohort of 5 patients had additional symptoms of dysarthria, dysphagia, parkinsonism, tremor and gait abnormality, similar radiological features. The Asian, European and American cohort had similar clinical and radiological features. Seizures were more commonly reported in America cohort and presence of calcification was less common imaging abnormality in all cohorts. Genetic profiling showed heterozygous predominantly missense variants in the TKD in all cohorts. CONCLUSION CSF1R-RD has distinct clinical profile of cognitive impairment, spasticity, psychiatric disturbances with dysarthria, dysphagia, parkinsonism, tremor, ataxia, seizures, aphasia and gait abnormality. Calcification is less common radiological abnormality with heterozygous missense variants in the TKD as the common genetic variant.
Collapse
Affiliation(s)
- Rohan Ramachandra Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India.
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences, First Floor, Neurosciences Faculty Block, Hosur Road, Bengaluru, 560029, Karnataka, India
| |
Collapse
|
3
|
Ruano-Rodríguez S, Navarro-Alonso M, Domínguez-Velasco B, Álvarez-Dolado M, Esteban FJ. STXBP1 Syndrome: Biotechnological Advances, Challenges, and Perspectives in Gene Therapy, Experimental Models, and Translational Research. BIOTECH 2025; 14:11. [PMID: 40227275 PMCID: PMC11939967 DOI: 10.3390/biotech14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
STXBP1 syndrome is a severe early-onset epileptic encephalopathy characterized by developmental delay and intellectual disability. This review addresses key challenges in STXBP1 syndrome research, focusing on advanced therapeutic approaches and experimental models. We explore gene therapy strategies, including CRISPR-Cas9, adeno-associated viral (AAV) vectors, and RNA therapies such as antisense oligonucleotides (ASOs), aimed at correcting STXBP1 genetic dysfunctions. This review presents in vivo and in vitro models, highlighting their contributions to understanding disease mechanisms. Additionally, we provide a proposal for a detailed bioinformatic analysis of a Spanish cohort of 41 individuals with STXBP1-related disorders, offering insights into specific mutations and their biological implications. Clinical and translational perspectives are discussed, emphasizing the potential of personalized medicine approaches. Future research directions and key challenges are outlined, including the identification of STXBP1 interactors, unexplored molecular pathways, and the need for clinically useful biomarkers. This comprehensive review underscores the complexity of STXBP1-related infantile epileptic encephalopathy and opens new avenues for advancing the understanding and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Silvestre Ruano-Rodríguez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Mar Navarro-Alonso
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Benito Domínguez-Velasco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Manuel Álvarez-Dolado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
4
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
5
|
Wade C, Runeckles K, Chataway J, Houlden H, Lynch DS. CSF1R-Related Disorder: Prevalence of CSF1R Variants and Their Clinical Significance in the UK Population. Neurol Genet 2024; 10:e200179. [PMID: 39040919 PMCID: PMC11261581 DOI: 10.1212/nxg.0000000000200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Background and Objectives CSF1R-related disorder (CSF1R-RD) is a devastating neurodegenerative disorder caused by variants in the colony stimulating factor-1 receptor (CSF1R) gene. CSF1R-RD leads to a variable combination of cognitive impairment, movement disorders, upper motor neuron signs, and spasticity with associated imaging abnormalities in brain white matter. Although increasingly recognized, there is evidence that it is significantly underdiagnosed or misdiagnosed, and its true prevalence is unknown. We leveraged the large data set of the UK Biobank to determine the prevalence of CSF1R mutations in the UK population and identify clinical phenotypes associated with these variants. Methods Pathogenic and likely pathogenic CSF1R variants were identified in UK Biobank whole-exome sequencing data (N = 470,000). Medical history, including neurologic and psychiatric disease, were determined from self-reported and hospital collected codes, and the volume of MRI white matter hyperintensities were compared between variant carriers and controls. Results We identified 25 individuals carrying 18 unique pathogenic variants and 107 individuals carrying 44 unique likely pathogenic variants-combined prevalence 132 (∼1 in 3,500). Pathogenic CSF1R variant carriers had increased risk of psychiatric disease (OR: 5.15, p = 0.0079), depression (OR: 10.52, p = 0.0015), and Parkinson disease (OR: 19.80, p = 0.0038). Using algorithmically defined diagnosis data, pathogenic or likely pathogenic variants (the combined group) carriers were at higher risk for both dementia (OR: 2.50, p = 0.046) and vascular dementia (OR: 4.72, p = 0.032). Discussion Damaging variants in CSF1R are more common than expected in the general population and are associated with cognitive, psychiatric, and movement disorder diagnoses, which may reflect clinical manifestation of the disease. This study suggests that CSF1R-RD is either underreported, not diagnosed because of lack of genetic screening or that there is reduced penetrance.
Collapse
Affiliation(s)
- Charles Wade
- From the Queen Square Multiple Sclerosis Centre (C.W., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; RFF Consultancy (K.R.), Toronto, Ontario, Canada; Department of Neuromuscular Disease (H.H.), UCL Queen Square Institute of Neurology; National Institute for Health Research (J.C., D.S.L.), University College London Hospitals, Biomedical Research Centre; and National Hospital for Neurology and Neurosurgery (D.S.L.), Queen Square, London, United Kingdom
| | - Kyle Runeckles
- From the Queen Square Multiple Sclerosis Centre (C.W., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; RFF Consultancy (K.R.), Toronto, Ontario, Canada; Department of Neuromuscular Disease (H.H.), UCL Queen Square Institute of Neurology; National Institute for Health Research (J.C., D.S.L.), University College London Hospitals, Biomedical Research Centre; and National Hospital for Neurology and Neurosurgery (D.S.L.), Queen Square, London, United Kingdom
| | - Jeremy Chataway
- From the Queen Square Multiple Sclerosis Centre (C.W., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; RFF Consultancy (K.R.), Toronto, Ontario, Canada; Department of Neuromuscular Disease (H.H.), UCL Queen Square Institute of Neurology; National Institute for Health Research (J.C., D.S.L.), University College London Hospitals, Biomedical Research Centre; and National Hospital for Neurology and Neurosurgery (D.S.L.), Queen Square, London, United Kingdom
| | - Henry Houlden
- From the Queen Square Multiple Sclerosis Centre (C.W., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; RFF Consultancy (K.R.), Toronto, Ontario, Canada; Department of Neuromuscular Disease (H.H.), UCL Queen Square Institute of Neurology; National Institute for Health Research (J.C., D.S.L.), University College London Hospitals, Biomedical Research Centre; and National Hospital for Neurology and Neurosurgery (D.S.L.), Queen Square, London, United Kingdom
| | - David S Lynch
- From the Queen Square Multiple Sclerosis Centre (C.W., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; RFF Consultancy (K.R.), Toronto, Ontario, Canada; Department of Neuromuscular Disease (H.H.), UCL Queen Square Institute of Neurology; National Institute for Health Research (J.C., D.S.L.), University College London Hospitals, Biomedical Research Centre; and National Hospital for Neurology and Neurosurgery (D.S.L.), Queen Square, London, United Kingdom
| |
Collapse
|
6
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
7
|
Wade C, Lynch DS. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:263-271. [PMID: 39322383 DOI: 10.1016/b978-0-323-99209-1.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is an adult-onset, inherited white matter disorder encompassing two previously identified clinicopathologically similar entities: pigmentary orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with spheroids (HDLS). In this chapter, we discuss how advances in our genetic understanding of the condition have further delineated three distinct clinical entities within ALSP, namely CSF1R-related ALSP, AARS2-related leukoencephalopathy (AARS2-L), and AARS (HDLS-S). We provide descriptions of the clinical, radiologic, pathologic, and pathophysiologic findings in each entity, detailing their similarities and differences, and discuss current and future treatment options where available.
Collapse
Affiliation(s)
- Charles Wade
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London, United Kingdom
| | - David S Lynch
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
8
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Okojie AK, Uweru JO, Coburn MA, Li S, Cao-Dao VD, Eyo UB. Distinguishing the effects of systemic CSF1R inhibition by PLX3397 on microglia and peripheral immune cells. J Neuroinflammation 2023; 20:242. [PMID: 37865779 PMCID: PMC10590528 DOI: 10.1186/s12974-023-02924-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are derived from the yolk sac and populate the brain during development. Once microglia migrate to the CNS, they are self-renewing and require CSF1R signaling for their maintenance. Pexidartinib (PLX3397, PLX), a small molecule inhibitor of the CSF1R, has been shown to effectively deplete microglia since microglial maintenance is CSF1R-dependent. There have, however, been several conflicting reports that have shown the potential off-target effects of PLX on peripheral immune cells particularly those of lymphoid origin. Given this controversy in the use of the PLX family of drugs, it has become important to ascertain to what extent PLX affects the peripheral immune profile in lymphoid (spleen, and bone marrow) and non-lymphoid (kidney, lungs, and heart) organs. PLX3397 chow treatment at 660 mg/kg for 7 days significantly reduced CD45+ macrophages, CX3CR1-GFP cells, CD11b+CD45intermediate cells, and P2RY12 expression in the brain. However, there were minimal effects on peripheral immune cells from both lymphoid and non-lymphoid organs except in the heart where there was a significant decrease in CD3+ cells, inflammatory and patrolling monocytes, and CD11b+Ly6G+ neutrophils. We then stimulated the immune system with 1 mg/kg of LPS which resulted in a significant reduction in the number of innate immune cells. In this context, PLX did not alter the cytokine profile in the serum and the brain of naïve mice but did so in the LPS-stimulated group resulting in a significant reduction in TNFα, IL-1α, IFN-γ and IL-1β. Furthermore, PLX did not alter locomotor activity in the open field test suggesting that microglia do not contribute to LPS-induced sickness behavior. Our results provide an assessment of immune cell populations with PLX3397 treatment on brain, lymphoid and non-lymphoid organs without and during LPS treatment that can serve as a resource for understanding consequences of such approaches.
Collapse
Affiliation(s)
- Akhabue K Okojie
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Joseph O Uweru
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Morgan A Coburn
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vivian D Cao-Dao
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Loeb AM, Pattwell SS, Meshinchi S, Bedalov A, Loeb KR. Donor bone marrow-derived macrophage engraftment into the central nervous system of patients following allogeneic transplantation. Blood Adv 2023; 7:5851-5859. [PMID: 37315172 PMCID: PMC10558597 DOI: 10.1182/bloodadvances.2023010409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.
Collapse
Affiliation(s)
| | - Siobhan S. Pattwell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Antonio Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Keith R. Loeb
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Misirocchi F, Zilioli A, Benussi A, Capellari S, Mutti C, Florindo I, Spallazzi M, Parrino L. A Novel CSF1R Mutation Mimicking Frontotemporal Dementia: A Glimpse into a Microgliopathy. Can J Neurol Sci 2023; 50:642-644. [PMID: 35726564 DOI: 10.1017/cjn.2022.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Carlotta Mutti
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Li X, Hu B, Guan X, Wang Z, Zhou Y, Sun H, Zhang X, Li Y, Huang X, Zhao Y, Wang X, Xu H, Zhang YW, Wang Z, Zheng H. Minocycline protects against microgliopathy in a Csf1r haplo-insufficient mouse model of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). J Neuroinflammation 2023; 20:134. [PMID: 37259140 DOI: 10.1186/s12974-023-02774-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/05/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Mutations in colony-stimulating factor 1 receptor (CSF1R) are known to cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), which has been recently demonstrated as a primary microgliopathy characterized by cognitive impairment. Although the molecular mechanism underlying CSF1R-mediated microgliopathy remains unclear, therapeutic strategies have generally targeted modulation of microglial function. In particular, the microglial inhibitor, minocycline, has been shown to attenuate learning and memory deficits in several neurodegenerative diseases. The objectives of this study were to investigate the pathogenic mechanisms underlying ALSP and to explore the therapeutic effects of minocycline in an in vivo model of ALSP. We hypothesized that inhibiting microglial activation via minocycline could reverse the behavior and pathological defects in ALSP model mice. METHODS We generated a Csf1r haploinsufficiency mouse model of ALSP using CRISPR/Cas9 genome editing and conducted electrophysiological recordings of long-term potentiation (LTP) and behavioral tests to validate the recapitulation of clinical ALSP characteristics in 8- to 11-month-old mice. RNA-sequencing was used to explore enriched gene expression in the molecular pathogenesis of ALSP. Microglial activation was assessed by immunofluorescent detection of Iba1 and CD68 in brain sections of male ALSP mice and pro-inflammatory activation and phagocytosis were assessed in Csf1r+/- microglia. Therapeutic effects were assessed by behavioral tests, histological analysis, and morphological examination after four weeks of intraperitoneal injection with minocycline or vehicle control in Csf1r+/- mice and wild-type control littermates. RESULTS We found that synaptic function was reduced in LTP recordings of neurons in the hippocampal CA1 region, while behavioral tests showed impaired spatial and cognitive memory specifically in male Csf1r+/- mice. Increased activation, pro-inflammatory cytokine production, and enhanced phagocytic capacity were also observed in Csf1r+/- microglia. Treatment with minocycline could suppress the activation of Csf1r+/- microglia both in vitro and in vivo. Notably, the behavioral and pathological deficits in Csf1r+/- mice were partially rescued by minocycline administration, potentially due to inhibition of microglial inflammation and phagocytosis in Csf1r+/- mice. CONCLUSIONS Our study shows that CSF1R deficiency results in aberrant microglial activation, characterized by a pro-inflammatory phenotype and enhanced phagocytosis of myelin. Our results also indicate that microglial inhibition by minocycline can ameliorate behavioral impairment and ALSP pathogenesis in CSF1R-deficient male mice, suggesting a potential therapeutic target for CSF1R-related leukoencephalopathy. Collectively, these data support that minocycline confers protective effects against CSF1R-related microgliopathy in male ALSP model mice.
Collapse
Affiliation(s)
- Xin Li
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Banglian Hu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaoyan Guan
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ziwei Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuhang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hao Sun
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xian Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanfang Li
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xin Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Huaxi Xu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhanxiang Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China.
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
13
|
Mordelt A, de Witte LD. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: Hype or hope? Curr Opin Neurobiol 2023; 79:102674. [PMID: 36657237 DOI: 10.1016/j.conb.2022.102674] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
There is a consensus in the field that microglia play a prominent role in neurodevelopmental processes like synaptic pruning and neuronal network maturation. Thus, a current momentum of associating microglia deficits with neurodevelopmental disorders (NDDs) emerged. This concept is challenged by rodent studies and clinical data. Intriguingly, reduced numbers of microglia or altered microglial functions do not necessarily lead to overt NDD phenotypes, and neuropsychiatric symptoms seem to develop primarily in adulthood. Hence, it remains open for discussion whether microglia are truly indispensable for healthy neurodevelopment. Here, we critically discuss the role of microglia in synaptic pruning and highlight area- and age dependency. We propose an updated model of microglia-mediated synaptic pruning in the context of NDDs and discuss the potential of targeting microglia for treatment of these disorders.
Collapse
Affiliation(s)
- Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands.
| | - Lot D de Witte
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, Capocchi J, Purnell FS, Nemec KM, Lahian A, Escobar A, England W, Chaluvadi S, O'Brien CA, Yaqoob F, Aisenberg WH, Porras-Paniagua M, Bennett ML, Davtyan H, Spitale RC, Blurton-Jones M, Bennett FC. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med 2023; 220:e20220857. [PMID: 36584406 DOI: 10.1084/jem.20220857] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Pharmacology Graduate Group, Biomedical Graduate Studies Program, University of Pennsylvania , Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, PA, USA
| | - Graham C Peet
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Program and Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Dave E Marzan
- Department of Biology, The College of New Jersey , Ewing, NJ, USA
| | - Joia Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
| | - Freddy S Purnell
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Alina Lahian
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mariko L Bennett
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| |
Collapse
|
15
|
Varghese N, Morrison B. Partial Depletion of Microglia Attenuates Long-Term Potentiation Deficits following Repeated Blast Traumatic Brain Injury in Organotypic Hippocampal Slice Cultures. J Neurotrauma 2023; 40:547-560. [PMID: 36508265 PMCID: PMC10081725 DOI: 10.1089/neu.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been a health concern in both military and civilian populations due to recent military and geopolitical conflicts. Military service members are frequently exposed to repeated bTBI throughout their training and deployment. Our group has previously reported compounding functional deficits as a result of increased number of blast exposures. In this study, we further characterized the decrease in long-term potentiation (LTP) by varying the blast injury severity and the inter-blast interval between two blast exposures. LTP deficits were attenuated with increasing inter-blast intervals. We also investigated changes in microglial activation; expression of CD68 was increased and expression of CD206 was decreased after multiple blast exposures. Expression of macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, interferon gamma-inducible protein (IP)-10, and regulated on activation, normal T cell expressed and secreted (RANTES) increased, while expression of IL-10 decreased in the acute period after both single and repeated bTBI. By partially depleting microglia prior to injury, LTP deficits after injury were significantly reduced. Treatment with the novel drug, MW-189, prevented LTP deficits when administered immediately following a repeated bTBI and even when administered only for an acute period (24 h) between two blast injuries. These findings could inform the development of therapeutic strategies to treat the neurological deficits of repeated bTBI suggesting that microglia play a major role in functional neuronal deficits and may be a viable therapeutic target to lessen the neurophysiological deficits after bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Hematopoietic Stem Cell Transplantation in CSF1R-Related Leukoencephalopathy: Retrospective Study on Predictors of Outcomes. Pharmaceutics 2022; 14:pharmaceutics14122778. [PMID: 36559271 PMCID: PMC9788080 DOI: 10.3390/pharmaceutics14122778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations in the CSF1R gene are the most common cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a neurodegenerative disease with rapid progression and ominous prognosis. Hematopoietic stem cell transplantation (HSCT) has been increasingly offered to patients with CSF1R-ALSP. However, different therapy results were observed, and it was not elucidated which patient should be referred for HSCT. This study aimed to determine predictors of good and bad HSCT outcomes in CSF1R-ALSP. We retrospectively analyzed 15 patients, 14 symptomatic and 1 asymptomatic, with CSF1R-ALSP that underwent HSCT. Median age of onset was 39 years, and the median age of HSCT was 43 years. Cognitive impairment was the most frequent initial manifestation (43%), followed by gait problems (21%) and neuropsychiatric symptoms (21%). Median post-HSCT follow-up was 26 months. Good outcomes were associated with gait problems as initial (p = 0.041) and predominant (p = 0.017) manifestation and younger age at HSCT (p = 0.044). Cognitive impairment as first manifestation was a predictor of a bad outcome (p = 0.016) and worsening of cognition post-HSCT (p = 0.025). In conclusion, gait problems indicated a milder phenotype with better response to HSCT and good therapy outcomes. In contrast, patients with a higher burden of cognitive symptoms were most likely not to benefit from HSCT.
Collapse
|
17
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
- Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
18
|
Advanced therapeutic strategies targeting microglia: beyond neuroinflammation. Arch Pharm Res 2022; 45:618-630. [PMID: 36166145 DOI: 10.1007/s12272-022-01406-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
For a long time, microglia have been recognized as the main culprits of neuroinflammatory responses because they are primary phagocytes present in the parenchyma of the central nervous system (CNS). However, with the evolving concept of microglial biology, advanced and precise approaches, rather than the global inhibition of activated microglia, have been proposed in the management of neurological disorders. Yolk sac-derived resident microglia have heterogeneous composition according to brain region, sex, and diseases. They play a key role in the maintenance of CNS homeostasis and as primary phagocytes. The perturbation of microglia development can induce neurodevelopmental disorders. Microglia aggravate or alleviate neuroinflammation according to microenvironment and their spatiotemporal dynamics. They are long-lived cells and repopulate via their proliferation or external monocyte engraft. Based on this evolving concept, understanding advanced therapeutic strategies targeting microglia can give us an opportunity to discover novel therapies for neurological disorders.
Collapse
|
19
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
20
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
21
|
Bianchin MM, Snow Z. Primary microglia dysfunction or microgliopathy: A cause of dementias and other neurological or psychiatric disorders. Neuroscience 2022; 497:324-339. [PMID: 35760218 DOI: 10.1016/j.neuroscience.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Microglia are unique cells in the central nervous system (CNS), being considered a sub-type of CNS macrophage. These cells monitor nearby micro-regions, having roles that far exceed immunological and scavengering functions, being fundamental for developing, protecting and maintaining the integrity of grey and white matter. Microglia might become dysfunctional, causing abnormal CNS functioning early or late in the life of patients, leading to neurologic or psychiatric disorders and premature death in some patients. Observations that the impairment of normal microglia function per se could lead to neurological or psychiatric diseases have been mainly obtained from genetic and molecular studies of Nasu-Hakola disease, caused by TYROBP or TREM2 mutations, and from studies of adult-onset leukoencephalopathy with axonal spheroids (ALSP), caused by CSF1R mutations. These classical microgliopathies are being named here Microgliopathy Type I. Recently, mutations in TREM2 have also been associated with Alzheimer Disease. However, in Alzheimer Disease TREM2 allele variants lead to an impaired, but functional TREM2 protein, so that patients do not develop Nasu-Hakola disease but are at increased risk to develop other neurodegenerative diseases. Alzheimer Disease is the prototype of the neurodegenerative disorders associated with these TREM2 variants, named here the Microgliopathies Type II. Here, we review clinical, pathological and some molecular aspects of human diseases associated with primary microglia dysfunctions and briefly comment some possible therapeutic approaches to theses microgliopathies. We hope that our review might update the interesting discussion about the impact of intrinsic microglia dysfunctions in the genesis of some pathologic processes of the CNS.
Collapse
Affiliation(s)
- Marino Muxfeldt Bianchin
- Basic Research and Advanced Investigations in Neurosciences (BRAIN), Universidade Federal do Rio Grande do Sul, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Brazil; Division of Neurology, Hospital de Clínicas de Porto Alegre, Brazil.
| | - Zhezu Snow
- Basic Research and Advanced Investigations in Neurosciences (BRAIN), Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells 2022; 11:cells11121902. [PMID: 35741031 PMCID: PMC9220858 DOI: 10.3390/cells11121902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although different regions of the brain are dedicated to specific functions, the intra- and inter-regional heterogeneity of astrocytes and microglia in these regions has not yet been fully understood. Recently, an advancement in various technologies, such as single-cell RNA sequencing, has allowed for the discovery of astrocytes and microglia with distinct molecular fingerprints and varying functions in the brain. In addition, the regional heterogeneity of astrocytes and microglia exhibits different functions in several situations, such as aging and neurodegenerative diseases. Therefore, investigating the region-specific astrocytes and microglia is important in understanding the overall function of the brain. In this review, we summarize up-to-date research on various intra- and inter-regional heterogeneities of astrocytes and microglia, and provide information on how they can be applied to aging and neurodegenerative diseases.
Collapse
|
23
|
Fan Y, Han J, Yang Y, Chen T. Novel mitochondrial alanyl-tRNA synthetase 2 (AARS2) heterozygous mutations in a Chinese patient with adult-onset leukoencephalopathy. BMC Neurol 2022; 22:214. [PMID: 35676634 PMCID: PMC9175470 DOI: 10.1186/s12883-022-02720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Missense mutations in the mitochondrial alanyl-tRNA synthetase 2 (AARS2) gene are clinically associated with infantile mitochondrial cardiomyopathy or adult-onset leukoencephalopathy with early ovarian failure. To date, approximately 40 cases have been reported related to AARS2 mutations, while its genetic and phenotypic spectrum remains to be defined. CASE PRESENTATION We identified a 24-year-old Chinese female patient with adult-onset leukoencephalopathy carrying novel compound heterozygous pathogenic mutations in the AARS2 gene (c.718C > T and c.1040 + 1G > A) using a whole-exome sequencing approach. CONCLUSIONS Our findings further extend the mutational spectrum of AARS2-related leukoencephalopathy and highlight the importance of the whole-exome sequencing in precisely diagnosing adult-onset leukoencephalopathies.
Collapse
Affiliation(s)
- Yan Fan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yanyan Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China.
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
24
|
Rosenstein I, Andersen O, Victor D, Englund E, Granberg T, Hedberg‐Oldfors C, Jood K, Fitrah YA, Ikeuchi T, Danylaité Karrenbauer V. Four Swedish cases of CSF1R-related leukoencephalopathy: Visualization of clinical phenotypes. Acta Neurol Scand 2022; 145:599-609. [PMID: 35119108 PMCID: PMC9304267 DOI: 10.1111/ane.13589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Colony stimulating factor 1 receptor (CSF1R)‐related leukoencephalopathy is a rare, genetic disease caused by heterozygous mutations in the CSF1R gene with rapidly progressive neurodegeneration, behavioral, cognitive, motor disturbances.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of neurology Region Västra Götaland Södra Älvsborgs Hospital Borås Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Daniel Victor
- Department of Neurology Halmstad Hospital Halmstad Sweden
| | - Elisabet Englund
- Neuropathology, Department of Genetics and Pathology Laboratory Medicine Lund Sweden
| | - Tobias Granberg
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
| | - Carola Hedberg‐Oldfors
- Department of Laboratory Medicine Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | | | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
- Medical Unit Neuro R52 Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
25
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
26
|
Mickeviciute GC, Valiuskyte M, Plattén M, Wszolek ZK, Andersen O, Danylaité Karrenbauer V, Ineichen BV, Granberg T. Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations. J Intern Med 2022; 291:269-282. [PMID: 34875121 DOI: 10.1111/joim.13420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.
Collapse
Affiliation(s)
- Goda-Camille Mickeviciute
- Department of Physical Medicine and Rehabilitation, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Monika Valiuskyte
- Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of Chemistry, Biotechnology, and Health, Royal Institute of Technology, Stockholm, Sweden
| | | | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Papapetropoulos S, Pontius A, Finger E, Karrenbauer V, Lynch DS, Brennan M, Zappia S, Koehler W, Schoels L, Hayer SN, Konno T, Ikeuchi T, Lund T, Orthmann-Murphy J, Eichler F, Wszolek ZK. Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia: Review of Clinical Manifestations as Foundations for Therapeutic Development. Front Neurol 2022; 12:788168. [PMID: 35185751 PMCID: PMC8850408 DOI: 10.3389/fneur.2021.788168] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
A comprehensive review of published literature was conducted to elucidate the genetics, neuropathology, imaging findings, prevalence, clinical course, diagnosis/clinical evaluation, potential biomarkers, and current and proposed treatments for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rare, debilitating, and life-threatening neurodegenerative disorder for which disease-modifying therapies are not currently available. Details on potential efficacy endpoints for future interventional clinical trials in patients with ALSP and data related to the burden of the disease on patients and caregivers were also reviewed. The information in this position paper lays a foundation to establish an effective clinical rationale and address the clinical gaps for creation of a robust strategy to develop therapeutic agents for ALSP, as well as design future clinical trials, that have clinically meaningful and convergent endpoints.
Collapse
Affiliation(s)
- Spyros Papapetropoulos
- Vigil Neuroscience, Inc, Cambridge, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Elizabeth Finger
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Virginija Karrenbauer
- Neurology Medical Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - David S. Lynch
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | | | | - Ludger Schoels
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Stefanie N. Hayer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Troy Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | | | | | | |
Collapse
|
28
|
Salsano E, Benzoni C. Adult‐onset leukoencephalopathy caused by
CSF1R
mutations: Is all that glitters gold? Ann Clin Transl Neurol 2022; 9:98-100. [PMID: 34981897 PMCID: PMC8791797 DOI: 10.1002/acn3.51490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Affiliation(s)
- Ettore Salsano
- Unit of Rare Neurodegenerative and Neurometabolic Diseases Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Chiara Benzoni
- Unit of Rare Neurodegenerative and Neurometabolic Diseases Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
29
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Arshad F, Vengalil S, Maskomani S, Kamath SD, Kulanthaivelu K, Mundlamuri RC, Yadav R, Nalini A. Novel CSF1R variant in adult-onset leukoencephalopathy masquerading as frontotemporal dementia: a follow-up study. Neurocase 2021; 27:484-489. [PMID: 34983323 DOI: 10.1080/13554794.2021.2022704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter degenerative disease manifesting as progressive cognitive decline, pyramidal, and extrapyramidal features resulting from mutations in the colony-stimulating factor-1 receptor (CSF1R) gene. We describe a sporadic case of a young man who developed five months history of progressive cognitive decline with predominant neuropsychiatric symptoms, suggestive of frontotemporal dementia. Brain magnetic resonance imaging (MRI) showed bilateral frontotemporal atrophy, high signal intensities in frontal and high parietal deep white matter with persistent diffusion restriction on follow-up imaging. Genetics showed a novel heterozygous mutation in CSF1R gene confirming the diagnosis of ALSP. Being a rare disease, and given its particular adult-onset presentation especially presenile cognitive impairment, it can pose a unique diagnostic challenge. The study highlights the importance of recognizing the disease early and broadens the clinical, genetic, and imaging spectrum of CSF1R gene mutation.
Collapse
Affiliation(s)
- Faheem Arshad
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | | | - Sneha Dayanand Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | | | | | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
31
|
Friberger I, Jussing E, Han J, Goos JACM, Siikanen J, Kaipe H, Lambert M, Harris RA, Samén E, Carlsten M, Holmin S, Tran TA. Optimisation of the Synthesis and Cell Labelling Conditions for [ 89Zr]Zr-oxine and [ 89Zr]Zr-DFO-NCS: a Direct In Vitro Comparison in Cell Types with Distinct Therapeutic Applications. Mol Imaging Biol 2021; 23:952-962. [PMID: 34231103 PMCID: PMC8578071 DOI: 10.1007/s11307-021-01622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [89Zr]Zr-oxine (8-hydroxyquinoline) and [89Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. PROCEDURES Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of >95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [89Zr]Zr-oxine or [89Zr]Zr-DFO-NCS. The cellular retention of 89Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. RESULTS The optimised synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1-8 % compared to its corresponding non-labelled cells, P value > 0.05) nor the cells' proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. CONCLUSIONS Our study demonstrates that [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [89Zr]Zr-oxine was superior to [89Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen A C M Goos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
32
|
Sohn EH, Lee J, Lee AY, Shin JH. A case of CSF1R-related leukoencephalopathy: serial neuroimaging and neuropsychological tests. Neurocase 2021; 27:415-418. [PMID: 34633276 DOI: 10.1080/13554794.2021.1981947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is one of the most common causes of adult-onset leukodystrophy and is caused by mutation of the CSF1R gene. Brain magnetic resonance imaging (MRI) findings in asymptomatic patients have not been well recognized. We report on the case of a patient with CSF1R-related leukoencephalopathy who had a novel missense variant of the CSF1R gene with a family history of early onset dementia. This is a representative case of CSF1R-related leukoencephalopathy, which shows the progression of brain MRI and cognitive decline from an asymptomatic state.
Collapse
Affiliation(s)
- Eun Hee Sohn
- Department of Neurology, Chungnam National University Hospital, Deajeon, South Korea
| | - Juyoun Lee
- Department of Neurology, Chungnam National University Hospital, Deajeon, South Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University Hospital, Deajeon, South Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
33
|
Ayrignac X, Carra-Dallière C, Codjia P, Mouzat K, Castelnovo G, Ellie E, Etcharry-Bouyx F, Belliard S, Marelli C, Portet F, Le Ber I, Durand-Dubief F, Mathey G, Stankoff B, Dorboz I, Drunat S, Boespflug-Tanguy O, Menjot de Champfleur N, Lumbroso S, Mochel F, Labauge P. Evaluation of CSF1R-related adult onset leukoencephalopathy with axonal spheroids and pigmented glia diagnostic criteria. Eur J Neurol 2021; 29:329-334. [PMID: 34541732 DOI: 10.1111/ene.15115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Diagnostic criteria for adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation have recently been proposed. Our objective was to assess their accuracy in an independent multicenter cohort. METHODS We evaluated the sensitivity and specificity of the diagnostic criteria for ALSP (including the "probable" and "possible" definitions) in a national cohort of 22 patients with CSF1R mutation, and 59 patients with an alternative diagnosis of adult onset inherited leukoencephalopathy. RESULTS Overall, the sensitivity of the diagnostic criteria for ALSP was 82%, including nine of 22 patients diagnosed as probable and nine of 22 diagnosed as possible. Twenty of the 59 CSF1R mutation-negative leukoencephalopathies fulfilled the diagnostic criteria, leading to a specificity of 66%. CONCLUSIONS Diagnostic criteria for ALSP have an overall limited sensitivity along with a modest specificity. We suggest that in patients suspected of genetic leukoencephalopathy, a comprehensive magnetic resonance imaging pattern-based approach is warranted, together with white matter gene panel or whole exome sequencing.
Collapse
Affiliation(s)
- Xavier Ayrignac
- Department of Neurology, INM, INSERM, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | | | - Pekes Codjia
- Department of Neurology A, Neurological Hospital, Civil Hospices of Lyon, Bron, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, CHU Nimes, University of Montpellier, Nimes, France
| | | | - Emmanuel Ellie
- Department of Neurology, Bayonne Hospital, Bayonne, France
| | | | - Serge Belliard
- Department of Neurology, Pontchaillou University Hospital, CMRR, Rennes, France.,Laboratory of Neuropsychology, INSERM U 1077, Caen, France
| | - Cecilia Marelli
- EPHE, INSERM, MMDN, University of Montpellier, Montpellier, France.,Expert Center for Neurogenetic Diseases, CHU, Montpellier, France
| | - Florence Portet
- University Department of Adult Psychiatry, La Colombière Hospital, Montpellier University Hospital, Montpellier, France
| | - Isabelle Le Ber
- AP-HP, Reference Center for Rare or Early Onset Dementias, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne Université, ICM (Paris Brain Institute), APHP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Bruno Stankoff
- Department of Neurology, St. Antoine Hospital, APHP, ICM, Paris, France
| | - Imen Dorboz
- INSERM UMR1141, Sorbonne Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris Diderot University, Paris, France
| | - Severine Drunat
- Department of Genetics, APHP Robert Debré, Paris, France.,INSERM UMR, 1141, NeuroDiderot, University of Paris, Paris, France
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, Sorbonne Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris Diderot University, Paris, France
| | | | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, CHU Nimes, University of Montpellier, Nimes, France
| | - Fanny Mochel
- Sorbonne University, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Pierre Labauge
- Department of Neurology, INM, INSERM, University of Montpellier, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
34
|
Han J, Harris RA, Karrenbauer VD. Chronic Immunosuppression and Potential Infection Risks in CSF1R-Related Leukoencephalopathy. Mov Disord 2021; 36:1470-1471. [PMID: 34145638 DOI: 10.1002/mds.28627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | - Virginija Danylaité Karrenbauer
- Neuroepidemiology with focus on MS, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Han J, Fan Y, Zhou K, Blomgren K, Harris RA. Uncovering sex differences of rodent microglia. J Neuroinflammation 2021; 18:74. [PMID: 33731174 PMCID: PMC7972194 DOI: 10.1186/s12974-021-02124-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
There are inherent structural and functional differences in the central nervous systems (CNS) of females and males. It has been gradually established that these sex-specific differences are due to a spectrum of genetic, epigenetic, and hormonal factors which actively contribute to the differential incidences, disease courses, and even outcomes of CNS diseases between sexes. Microglia, as principle resident macrophages in the CNS, play a crucial role in both CNS physiology and pathology. However, sex differences of microglia have been relatively unexplored until recently. Emerging data has convincingly demonstrated the existence of sex-dependent structural and functional differences of rodent microglia, consequently changing our current understanding of these versatile cells. In this review, we attempt to comprehensively outline the current advances revealing microglial sex differences in rodent and their potential implications for specific CNS diseases with a stark sex difference. A detailed understanding of molecular processes underlying microglial sex differences is of major importance in design of translational sex- and microglia-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden.
| | - Yueshan Fan
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Kai Zhou
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden.
| |
Collapse
|
36
|
Li W, Liu J, Tan W, Zhou Y. The role and mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. Int J Med Sci 2021; 18:3059-3065. [PMID: 34400876 PMCID: PMC8364446 DOI: 10.7150/ijms.61153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune neurological disease that can cause blindness and disability. As the major mediators in the central nervous system, microglia plays key roles in immunological regulation in neuroinflammatory diseases, including NMOSD. Microglia can be activated by interleukin (IL)-6 and type I interferons (IFN-Is) during NMOSD, leading to signal transducer and activator of transcription (STAT) activation. Moreover, complement C3a secreted from activated astrocytes may induce the secretion of complement C1q, inflammatory cytokines and progranulin (PGRN) by microglia, facilitating injury to microglia, neurons, astrocytes and oligodendrocytes in an autocrine or paracrine manner. These processes involving activated microglia ultimately promote the pathological course of NMOSD. In this review, recent research progress on the roles of microglia in NMOSD pathogenesis is summarized, and the mechanisms of microglial activation and microglial-mediated inflammation, and the potential research prospects associated with microglial activation are also discussed.
Collapse
Affiliation(s)
- Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
37
|
Chen J, Luo S, Li N, Li H, Han J, Ling L. A Novel Missense Mutation of the CSF1R Gene Causes Incurable CSF1R-Related Leukoencephalopathy: Case Report and Review of Literature. Int J Gen Med 2020; 13:1613-1620. [PMID: 33376386 PMCID: PMC7765750 DOI: 10.2147/ijgm.s286421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
CSF1R-related leukoencephalopathy, mainly caused by the mutation of the colony stimulating factor 1 receptor (CSF1R) gene on chromosome 5, is an underestimated neurological disease typically presenting as early-onset cognitive decline and personality changes. Currently, there is no specific treatment for CSF1R-related leukoencephalopathy. Most clinicians failed to recognize this disease during an early disease stage, leading to a high rate of misdiagnosis. Although rare, an increasing amount of CSF1R-related leukoencephalopathy cases have been reported recently. In this study, we first report a 35-year-old woman with CSF1R-related leukoencephalopathy carrying a novel missense mutation c.2463G >C (p.W821C) of CSF1R. An extensive literature research was performed in order to better understand the broader genetic and clinical characteristics of CSF1R-related leukoencephalopathy. A total of 147 patients with CSF1R-related leukoencephalopathy confirmed either by the genetic test or brain biopsy were identified. Among them, 49 patients were sporadic, and the rest of individuals had a family history originating from 46 different families. Our study indicated that the average age of CSF1R-related leukoencephalopathy onset was 41.4 years. Typical clinical symptoms of CSF1R-related leukoencephalopathy include cognitive decline, movement disorders, behavior changes and mental disorders. Genetic studies have reported 93 missense mutations, 13 splicing mutations, 6 deletion/insertion mutations, 1 code shift mutation and 1 nonsense mutation of the CSF1R gene in patients with CSF1R-related leukoencephalopathy. Early genetic detection and brain biopsy would be helpful for a confirmed diagnosis, and more translational studies are needed to combat this devastating disease.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, People’s Republic of China
| | - Shiying Luo
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, People’s Republic of China
| | - Ning Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, People’s Republic of China
| | - Huimin Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, People’s Republic of China
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Li Ling
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, People’s Republic of China
| |
Collapse
|