1
|
Hai P, Jia H, Luo Z, Fan H, He Y, Li X, Lin P, Zhang Q, Gao Y, Yang J. Meroterpenoids with anti-triple negative breast cancer and antimicrobial activities from Arnebia euchroma. Fitoterapia 2024; 179:106234. [PMID: 39332506 DOI: 10.1016/j.fitote.2024.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Two new meroterpenoids, arneuchrols A and B (1 and 2), together with twelve known analogs (3-14) were isolated from the root of Arnebia euchroma. The structures of 1 and 2 including their absolute configurations were elucidated by NMR, HRESIMS, and DFT calculation of their NMR and ECD data. The structure of pseudoshikonin I, firstly isolated from Lithospermi radix was revised as shikonofuran E (4). Anti-triple negative breast cancer (anti-TNBC) and antimicrobial activities of the isolated compounds were tested. Compounds 3, 4, 6, 7, 9, 10, and 13 exhibited potent inhibitory activity against TNBC (MDA-MB-231 cells) with IC50 values in the range of 0.18-4.58 μM. Compound 10 displayed antifungal activity against five plant pathogenic fungi with MIC values in the range of 6.25-25 μg/mL. Compound 9 exhibited antibacterial activity against Micrococcus lysodeikticus with MIC value of 12.5 μg/mL.
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Haiyan Jia
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixia Fan
- Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Yunqing He
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin 644000, Sichuan, China
| | - Xianyan Li
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Peng Lin
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Qin Zhang
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| |
Collapse
|
2
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
3
|
Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:881. [PMID: 37375828 DOI: 10.3390/ph16060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Shreekar Pant
- Centre for Biodiversity Studies, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - M A Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mouna Jeridi
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| |
Collapse
|
4
|
A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers (Basel) 2022; 14:cancers14163898. [PMID: 36010892 PMCID: PMC9406073 DOI: 10.3390/cancers14163898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Drugs are used to treat cancer. Most drugs available in the market are chemosynthetic drugs and have side effects on the patient during and after the treatment, in addition to cancer itself. For instance, hair loss, loss of skin color and texture, loss of energy, nausea, infertility, etc. To overcome these side effects, naturally obtained drugs from medicinal plants are preferred. Our review paper aims to encourage the study of anticancer medicinal plants by giving detailed information on thirty-three medicinal plants and parts that constitute the phytochemicals responsible for the treatment of cancer. The development of plant-based drugs could be a game changer in treating cancer as well as boosting the immune system. Abstract Cancer is a serious and significantly progressive disease. Next to cardiovascular disease, cancer has become the most common cause of mortality in the entire world. Several factors, such as environmental factors, habitual activities, genetic factors, etc., are responsible for cancer. Many cancer patients seek alternative and/or complementary treatments because of the high death rate linked with cancer and the adverse side effects of chemotherapy and radiation therapy. Traditional medicine has a long history that begins with the hunt for botanicals to heal various diseases, including cancer. In the traditional medicinal system, several plants used to treat diseases have many bioactive compounds with curative capability, thereby also helping in disease prevention. Plants also significantly contributed to the modern pharmaceutical industry throughout the world. In the present review, we have listed 33 medicinal plants with active and significant anticancer activity, as well as their anticancer compounds. This article will provide a basic set of information for researchers interested in developing a safe and nontoxic active medicinal plant-based treatment for cancer. The research will give a scientific foundation for the traditional usage of these medicinal herbs to treat cancer.
Collapse
|
5
|
Kumar A, Shashni S, Kumar P, Pant D, Singh A, Verma RK. Phytochemical constituents, distributions and traditional usages of Arnebia euchroma: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113896. [PMID: 33524510 DOI: 10.1016/j.jep.2021.113896] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/02/2021] [Accepted: 01/24/2021] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study has indicated phytochemical composition, distribution and ethno-medicinal uses of Arnebia euchroma (Royle) I.M. Johnst, which is commonly known as "Ratanjot" in the Indian subcontinent. It has widely been used in the traditional systems of the Unani, Ayurvedic and Chinese medicines recipes due to its anti-fungal and anti-microbial properties. Instead, the gap of earlier studies is well defined that will be helpful for researchers to carry out more analysis and increase medicinal importance of this plant. AIM OF STUDY The main aim of this review study is to demonstrate the phytochemical composition and traditional ethno-medicinal uses of A. euchroma all over the world. Earlier studies related to this plant have been discussed in the present study and on that basis, future perspective of A. euchroma is also proposed. MATERIALS AND METHODS The information of A. euchroma has been gathered from various electronic database, reference books and available literature. RESULTS The study has indicated that Arnebia euchroma owing to anti-microbial and anti-inflammatory properties is used in the traditional medicines and pharmaceutical industries for the treatment of hair problems, remitting, chronic diseases, burnt limbs, cough and cold, etc., and besides as a vegetable colorant and dyeing of cloths. The important phytochemical constituents viz., shikonin, acetyl-shikonin, iso-butyryl-shikonin, β,β-di-methylacryl-shikonin, isovaleryl-shikonin, β-hydroxy-isovaleryl-shikonin, deoxy-shikonin, isobutyl-shikonin, arnebinone, arnebin-7, stigmasterol, etc., isolated from the roots of Arnebia euchroma are used for curing various harmful diseases. CONCLUSIONS The earlier studies have confirmed that Arnebia euchroma is having wound healing, anti-microbial and anti-bacterial properties and thus used for the treatment of several diseases. Although, a little works is done on the experimental study regarding anti-HIV, anti-cancer diseases, etc., so there is a requirement of more exploration via analytical studies on phytochemical compounds to treat such diseases. Moreover, the information of its clinical and pharmacokinetics uses is also limited. Therefore, further research is needed to understand bioavailability and pharmacokinetics of this species. In-situ and ex-situ conservations for the management of this endangered species are also lacking in the Himalayan perspective. Such studies will emphasize to explore the possibilities for its conservation and development of agro-technological protocol.
Collapse
Affiliation(s)
- Anil Kumar
- Himalayan Forest Research Institute, Panthaganti, Shimla, Himachal Pradesh, 171013, India; G. B. Pant National Institute of Himalayan Environment Himachal Regional Centre Mohal, Kullu, 175126, India.
| | - Sarla Shashni
- G. B. Pant National Institute of Himalayan Environment Himachal Regional Centre Mohal, Kullu, 175126, India
| | - Pawan Kumar
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India
| | - Ashok Singh
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Raj Kumar Verma
- Himalayan Forest Research Institute, Panthaganti, Shimla, Himachal Pradesh, 171013, India
| |
Collapse
|
6
|
Nindawat S, Agrawal V. Arabian Primrose leaf extract mediated synthesis of silver nanoparticles: their industrial and biomedical applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1259-1271. [PMID: 33016155 DOI: 10.1080/21691401.2020.1817056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study encompasses green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Arabian Primrose within 6 min of reaction at 60 °C, pH 7 and their characterisation using physico-chemical analytical techniques. UV-Visible spectroscopy elucidated the surface plasmon resonance around 420 nm. FESEM and TEM images revealed that AgNPs were spherical with average diameter 10-60 nm. XRD pattern confirmed their crystalline nature. The leaf extract rich in phenolics and flavonoids was subjected to GC-MS analysis that identified bioactive compounds helping in reduction and stabilisation of AgNPs. The synthesised AgNPs possessed high anti-oxidant potential against DPPH and H2O2 radicals. Incidentally, the AgNPs acted as excellent nanocatalyst towards borohydride reduction and degradation of structurally different organic dyes. The AgNPs also exhibited selective colorimetric sensing of hazardous mercuric, ferric ions and ammonia. Such AgNPs were cytotoxic against HeLa cells (IC50 7.18 µg/mL) and compatible towards normal L20B cells. These AgNPs showed effective anti-microbial activity against different human pathogens tested (bacterial and fungal). This is probably the first report of AgNPs synthesis using Arabian Primrose leaf extract showing strong anti-oxidant, catalytic, biosensing, anti-cancer and anti-microbial activities and find remarkable applications in medical, industrial and ecological sectors.
Collapse
Affiliation(s)
- Shruti Nindawat
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Manipulation of Plant Growth Regulators on Phytochemical Constituents and DNA Protection Potential of the Medicinal Plant Arnebia benthamii. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516007 PMCID: PMC5817313 DOI: 10.1155/2018/6870139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Arnebia benthamii of the family Boraginaceae is a critically endangered nonendemic plant of the Kashmir Himalayas and is used to treat a number of human diseases. The current study was based on developing an in vitro micropropagation protocol vis-à-vis induction of various secondary metabolites under in vitro conditions for the possible biological activity. A tissue culture protocol was developed for A. benthamii for the first time in the Himalayan region using varied combinations and proper media formulations, including various adjuvants: Murashige and Skoog (MS) media, growth hormones, sugars, agar, and so forth. The influence of different media combinations was estimated, and the MS + thidiazuron (TDZ) + indole 3-acetic acid (IAA) combination favors a higher regeneration potential. The higher amounts of chemical constituents were also recorded on the same treatment. The in vitro plant samples also showed a noteworthy effect of scavenging of hydroxyl radicals vis-à-vis protection from oxidative DNA damage. The in vitro raised plants are good candidates for the development of antioxidant molecules.
Collapse
|