1
|
Pathrikar TV, Baby HM, Hakim B, Zhang H, Millán Cotto HA, Kondiboyina V, Zhang C, Bajpayee AG. Cartilage-targeting exosomes for delivery of receptor antagonist of interleukin-1 in osteoarthritis treatment. Osteoarthritis Cartilage 2025:S1063-4584(25)00862-3. [PMID: 40158651 DOI: 10.1016/j.joca.2025.02.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Exosomes are nano-sized cell-secreted vesicles naturally involved in joint tissue crosstalk and hold promise as drug carriers. Their negatively charged lipid bilayer, however, results in electrostatic repulsion from the anionic cartilage matrix limiting their applications in tissue targeting and drug delivery. Here we engineer cartilage targeting exosomes by reversing their net surface charge and use them for sustained delivery of interleukin-1 receptor antagonist (IL-1RA), a disease-modifying osteoarthritis (OA) drug that suffers from rapid joint clearance and poor cartilage uptake. DESIGN Exosomes were surface modified by anchoring optimally charged cartilage targeting cationic motifs, Avidin (Av) and arginine-rich cationic peptide carrier (CPC). IL-1RA was surface anchored and encapsulated within the exosomes, creating two formulations: ExoAv-IL-1RA and ExoCPC-IL-1RA. Their penetration and retention in healthy and early OA cartilage were evaluated and compared with unmodified exosomes. The efficacy of ExoAv-IL-1RA and ExoCPC-IL-1RA in suppressing IL-1-induced tissue catabolism was tested using IL-1α challenged bovine cartilage explants over an 8-day culture period with a single dose and compared with free IL-1RA. RESULTS ExoAv-IL-1RA and ExoCPC-IL-1RA, penetrated and retained in the full-thickness of early-stage arthritic cartilage explants. Free IL-1RA failed to suppress IL-1α-induced catabolism over the culture period. In contrast, ExoCPC-IL-1RA significantly suppressed cytokine-induced glycosaminoglycan loss and nitrite release, enhancing cell metabolism and viability with only a one-time dose. CONCLUSION Cartilage targeting charge-reversed CPC anchored exosomes successfully targeted and delivered IL-1RA to early-stage arthritic cartilage. They hold promise as a cell-free intra-cartilage depot-forming carrier for sustained delivery of OA biologics.
Collapse
Affiliation(s)
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | | | - Vineel Kondiboyina
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
3
|
Ubhe A. IL-1 receptor antagonist: etiological and drug delivery systems overview. Inflamm Res 2024; 73:2231-2247. [PMID: 39455436 DOI: 10.1007/s00011-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE This article is aims to provide an overview of studies reported in the literature to investigate the etiological role of IL-1/IL-1ra in various disease conditions and the different drug delivery systems developed to achieve IL-1ra as a possible therapeutic option. METHODS Studies reported in PubMed, Google scholar, and other open-source literature related to etiological involvement of IL-1ra in pathophysiological conditions and various drug delivery schemes developed for IL-1ra for its efficacy evaluation as a possible treatment for different disease conditions were surveyed. RESULTS AND CONCLUSIONS The pathophysiological conditions involving IL-1/IL-1 ra spanned CNS-related disorders, Diabetes, Cardiac disorders, Ocular disease conditions, Gastrointestinal conditions, Tumor growth & metastasis, and miscellaneous conditions. The drug delivery systems developed for IL-1ra included a commercial drug product, Gene therapy, Antibody fusions, Extended-release delivery systems, and Pegylated-IL-1ra systems.
Collapse
|
4
|
Rohila A, Shukla R. Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis. J Microencapsul 2024; 41:434-455. [PMID: 38967562 DOI: 10.1080/02652048.2024.2373723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.
Collapse
Affiliation(s)
- Ayush Rohila
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
5
|
Majumder N, Roy C, Doenges L, Martin I, Barbero A, Ghosh S. Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9925-9943. [PMID: 38362893 DOI: 10.1021/acsami.3c18903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFβ), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFβ3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chandrashish Roy
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Laura Doenges
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Olson CP, Kennedy MI, DePhillipo NN, Tagliero AJ, LaPrade RF, Kennedy NI. Effect of anti-inflammatory treatments on patient outcomes and concentrations of inflammatory modulators in the post-surgical and post-traumatic tibiofemoral joint setting: a narrative review. ANNALS OF JOINT 2024; 9:9. [PMID: 38529299 PMCID: PMC10929283 DOI: 10.21037/aoj-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective There are several anti-inflammatory therapeutic options that can be used in the context of post-surgical and post-traumatic knee settings. Each of these options carries with it certain benefits, as well as potential issues depending on the duration and administration of each therapy. An understanding of how these anti-inflammatory drugs modulate various biomarkers of inflammation is also necessary in understanding how they can affect patient and objective outcomes following acute knee injury or surgery. This review covers the many traditional therapeutic options that have been used in treating knee injuries, as well as some natural therapeutics that have shown anti-inflammatory properties. Methods A current review of the literature was conducted and synthesized into this narrative review. Key Content and Findings Many traditional anti-inflammatory therapeutics have been shown to be beneficial in both post-traumatic and post-surgical tibiofemoral joint settings at reducing inflammation and improving patient outcomes. However, many of these treatments have risks associated with them, which becomes problematic with prolonged, repeated administration. Natural anti-inflammatory compounds may also have some benefit as adjunctive treatment options in these settings. Conclusions There are multiple different therapeutic options that can be used in acute knee settings, but the specific mechanism of injury or surgical context should be weighed when determining the best clinical approach.
Collapse
Affiliation(s)
| | | | | | - Adam J. Tagliero
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
7
|
Hecht JT, Veerisetty AC, Patra D, Hossain MG, Chiu F, Mobed C, Gannon FH, Posey KL. Early Resveratrol Treatment Mitigates Joint Degeneration and Dampens Pain in a Mouse Model of Pseudoachondroplasia (PSACH). Biomolecules 2023; 13:1553. [PMID: 37892235 PMCID: PMC10605626 DOI: 10.3390/biom13101553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudoachondroplasia (PSACH), a severe dwarfing condition associated with early-onset joint degeneration and lifelong joint pain, is caused by mutations in cartilage oligomeric matrix protein (COMP). The mechanisms underlying the mutant-COMP pathology have been defined using the MT-COMP mouse model of PSACH that has the common D469del mutation. Mutant-COMP protein does not fold properly, and it is retained in the rough endoplasmic reticulum (rER) of chondrocytes rather than being exported to the extracellular matrix (ECM), driving ER stress that stimulates oxidative stress and inflammation, driving a self-perpetuating cycle. CHOP (ER stress signaling protein) and TNFα inflammation drive high levels of mTORC1 signaling, shutting down autophagy and blocking ER clearance, resulting in premature loss of chondrocytes that negatively impacts linear growth and causes early joint degeneration in MT-COMP mice and PSACH. Previously, we have shown that resveratrol treatment from birth to 20 weeks prevents joint degeneration and decreases the pathological processes in articular chondrocytes. Resveratrol's therapeutic mechanism of action in the mutant-COMP pathology was shown to act by primarily stimulating autophagy and reducing inflammation. Importantly, we demonstrated that MT-COMP mice experience pain consistent with PSACH joint pain. Here, we show, in the MT-COMP mouse, that resveratrol treatment must begin within 4 weeks to preserve joint health and reduce pain. Resveratrol treatment started at 6 or 8 weeks (to 20 weeks) was not effective in preventing joint degeneration. Collectively, our findings in MT-COMP mice show that there is a postnatal resveratrol treatment window wherein the inevitable mutant-COMP joint degeneration and pain can be prevented.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Claire Mobed
- Department of Biology, Rice University, Houston, TX 77005, USA;
| | - Francis H. Gannon
- Departments of Pathology and Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| |
Collapse
|
8
|
Bruno MC, Cristiano MC, Celia C, d'Avanzo N, Mancuso A, Paolino D, Wolfram J, Fresta M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS NANO 2022; 16:19665-19690. [PMID: 36512378 DOI: 10.1021/acsnano.2c06393] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.
Collapse
Affiliation(s)
- Maria Chiara Bruno
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania
| | - Nicola d'Avanzo
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| |
Collapse
|
9
|
Intra-articular injection of flavopiridol-loaded microparticles for treatment of post-traumatic osteoarthritis. Acta Biomater 2022; 149:347-358. [PMID: 35779774 DOI: 10.1016/j.actbio.2022.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
Rapid joint clearance of small molecule drugs is the major limitation of current clinical approaches to osteoarthritis and its subtypes, including post-traumatic osteoarthritis (PTOA). Particulate systems such as nano/microtechnology could provide a potential avenue for improved joint retention of small molecule drugs. One drug of interest for PTOA treatment is flavopiridol, which inhibits cyclin-dependent kinase 9 (CDK9). Herein, polylactide-co-glycolide microparticles encapsulating flavopiridol were formulated, characterized, and evaluated as a strategy to mitigate PTOA-associated inflammation through the inhibition of CDK9. Characterization of the microparticles, including the drug loading, hydrodynamic diameter, stability, and release profile was performed. The mean hydrodynamic diameter of flavopiridol particles was ∼15 µm, indicating good syringeability and low potential for phagocytosis. The microparticles showed no cytotoxicity in-vitro, and drug activity was maintained after encapsulation, even after prolonged exposure to high temperatures (60 °C). Flavopiridol-loaded microparticles or blank (unloaded) microparticles were administered by intraarticular injection in a rat knee injury model of PTOA. We observed significant joint retention of flavopiridol microparticles compared to the soluble flavopiridol, confirming the sustained release behavior of the particles. Matrix metalloprotease (MMP) activity, an indicator of joint inflammation, was significantly reduced by flavopiridol microparticles 3 days post-injury. Histopathological analysis showed that flavopiridol microparticles reduced PTOA severity 28 days post-injury. Taken altogether, this work demonstrates a promising biomaterial platform for sustained small molecule drug delivery to the joint space as a therapeutic measure for post-traumatic osteoarthritis. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) begins with the deterioration of subchondral bone and cartilage after acute injuries. In spite of the prevalence of PTOA and its associated financial and psychological burdens, therapeutic measures remain elusive. A number of small molecule drugs are now under investigation to replace FDA-approved palliative measures, including cyclin-dependent kinase 9 (CDK9) inhibitors which work by targeting early inflammatory programming after injury. However, the short half-life of these drugs is a major hurdle to their success. Here, we show that biomaterial encapsulation of Flavopiridol (CDK9 inhibitor) in poly (lactic-co-glycolic acid) microparticles is a promising route for direct delivery and improved drug retention time in the knee joint. Moreover, administration of the flavopiridol microparticles reduced the severity of PTOA.
Collapse
|
10
|
Donnenfield JI, Karamchedu NP, Fleming BC, Molino J, Proffen BL, Murray MM. Articular cartilage and synovium may be important sources of post-surgical synovial fluid inflammatory mediators. Am J Transl Res 2022; 14:1640-1651. [PMID: 35422952 PMCID: PMC8991160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The primary source of synovial fluid inflammatory mediators is currently unknown and may include different tissues comprising the joint, including the synovium and articular cartilage. Prior work in a porcine model has demonstrated that anterior cruciate ligament (ACL) surgery leads to significant changes in early gene expression in the synovium and articular cartilage, which are the same whether concomitant ligament restoration is performed or not. In this study, 36 Yucatan minipigs underwent ACL surgery, and a custom multiplex assay was used to measure synovial fluid protein levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, GM-CSF, and TNFα in 18 animals at 1 and 4 weeks after surgery. Linear regressions were used to evaluate the relationships between synovial fluid protein levels and the previously reported gene expression levels in the articular cartilage and synovium from the same animal cohort. Synovial fluid levels of MMP-13 and IL-6 were significantly correlated with synovial gene expression (P=.003 and P<.001 respectively), while IL-1α levels were significantly correlated with articular cartilage gene expression (P=.037). The synovium may be an important source of MMP-13 and IL-6, and the articular cartilage may be an important source of IL-1α in post-surgical inflammation. In developing treatments for post-surgical inflammation, the synovium may therefore be a promising target for modulating inflammatory mediators such as MMP-13 and IL-6 in the synovial fluid.
Collapse
Affiliation(s)
- Jonah I Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Naga Padmini Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI 02903, USA
| | - Benedikt L Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Martha M Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
11
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
12
|
Mason D, Englund M, Watt FE. Prevention of posttraumatic osteoarthritis at the time of injury: Where are we now, and where are we going? J Orthop Res 2021; 39:1152-1163. [PMID: 33458863 DOI: 10.1002/jor.24982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
This overview of progress made in preventing post-traumatic osteoarthritis (PTOA) was delivered in a workshop at the Orthopaedics Research Society Annual Conference in 2019. As joint trauma is a major risk factor for OA, defining the molecular changes within the joint at the time of injury may enable the targeting of biological processes to prevent later disease. Animal models have been used to test therapeutic targets to prevent PTOA. A review of drug treatments for PTOA in rodents and rabbits between 2016 and 2018 revealed 11 systemic interventions, 5 repeated intra-articular or topical interventions, and 5 short-term intra-articular interventions, which reduced total Osteoarthritis Research Society International scores by 30%-50%, 20%-70%, and 0%-40%, respectively. Standardized study design, reporting of effect size, and quality metrics, alongside a "whole joint" approach to assessing efficacy, would improve the translation of promising new drugs. A roadblock to translating preclinical discoveries has been the lack of guidelines on the design and conduct of human trials to prevent PTOA. An international workshop addressing this in 2016 considered inclusion criteria and study design, and advocated the use of experimental medicine studies to triage candidate treatments and the development of early biological and imaging biomarkers. Human trials for the prevention of PTOA have tested anakinra after anterior cruciate ligament rupture and dexamethasone after radiocarpal injury. PTOA offers a unique opportunity for defining early mechanisms of OA to target therapeutically. Progress in trial design and high-quality preclinical research, and allegiance with patients, regulatory bodies, and the pharmaceutical industry, will advance this field.
Collapse
Affiliation(s)
- Deborah Mason
- Biomechanics and Bioengineeering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Martin Englund
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Clinical Epidemiology Unit, Lund Unversity, Lund, Sweden
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Wang L, Che K, Liu Y. Pharmacokinetics, distribution and efficacy of triptolide PLGA microspheres after intra-articular injection in a rat rheumatoid arthritis model. Xenobiotica 2021; 51:703-715. [PMID: 33938387 DOI: 10.1080/00498254.2021.1923860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The UPLC-MS/MS method was established with good precision, accuracy and stability to determine the concentrations of TPL in biological samples, such as heart, liver, spleen, lung, kidney, plasma and joint.After being made into microspheres, TPL can stay in the joint tissue for a long time, further reducing the number of times joint cavity administration, and its sustained release effect was significantly improved compared with the solution dosage form.The pharmacokinetic parameters, such as AUC(0-t), AUC(0-∞), T1/2, Tmax, MTR(0-t), and MTR(0-∞) of the TPL-PLGA-MS group were significantly increased compared with those of the solution group. The microsphere preparation could significantly slow the release rate of the drug from the joint cavity.TPL-PLGA-MS can significantly reduce the expression of inflammatory factors such as IL-1, IL-6, TNF-α and hs-CRP. TPL-PLGA-MS for articular cavity injection has potential as a new preparation for the treatment of RA.
Collapse
Affiliation(s)
- Lijuan Wang
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Keke Che
- Department of Pharmacy, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yan Liu
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
14
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
15
|
Kadir ND, Yang Z, Hassan A, Denslin V, Lee EH. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther 2021; 12:100. [PMID: 33536060 PMCID: PMC7860031 DOI: 10.1186/s13287-021-02137-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Secretome profiles of mesenchymal stem cells (MSCs) are reflective of their local microenvironments. These biologically active factors exert an impact on the surrounding cells, eliciting regenerative responses that create an opportunity for exploiting MSCs towards a cell-free therapy for cartilage regeneration. The conventional method of culturing MSCs on a tissue culture plate (TCP) does not provide the physiological microenvironment for optimum secretome production. In this study, we explored the potential of electrospun fiber sheets with specific orientation in influencing the MSC secretome production and its therapeutic value in repairing cartilage. METHODS Conditioned media (CM) were generated from MSCs cultured either on TCP or electrospun fiber sheets of distinct aligned or random fiber orientation. The paracrine potential of CM in affecting chondrogenic differentiation, migration, proliferation, inflammatory modulation, and survival of MSCs and chondrocytes was assessed. The involvement of FAK and ERK mechanotransduction pathways in modulating MSC secretome were also investigated. RESULTS We showed that conditioned media of MSCs cultured on electrospun fiber sheets compared to that generated from TCP have improved secretome yield and profile, which enhanced the migration and proliferation of MSCs and chondrocytes, promoted MSC chondrogenesis, mitigated inflammation in both MSCs and chondrocytes, as well as protected chondrocytes from apoptosis. Amongst the fiber sheet-generated CM, aligned fiber-generated CM (ACM) was better at promoting cell proliferation and augmenting MSC chondrogenesis, while randomly oriented fiber-generated CM (RCM) was more efficient in mitigating the inflammation assault. FAK and ERK signalings were shown to participate in the modulation of MSC morphology and its secretome production. CONCLUSIONS This study demonstrates topographical-dependent MSC paracrine activities and the potential of employing electrospun fiber sheets to improve the MSC secretome for cartilage regeneration.
Collapse
Affiliation(s)
- Nurul Dinah Kadir
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Afizah Hassan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Vinitha Denslin
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| |
Collapse
|
16
|
Tryfonidou MA, de Vries G, Hennink WE, Creemers LB. "Old Drugs, New Tricks" - Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 2020; 160:170-185. [PMID: 33122086 DOI: 10.1016/j.addr.2020.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) and chronic low back pain (CLBP) caused by intervertebral disc (IVD) degeneration are joint diseases that have become major causes for loss of quality of life worldwide. Despite the unmet need, effective treatments other than invasive, and often ineffective, surgery are lacking. Systemic administration of drugs entails suboptimal local drug exposure in the articular joint and IVD. This review provides an overview of the potency of biomaterial-based drug delivery systems as novel treatment modality, with a focus on the biological effects of drug release systems that have reached translation at the level of in vivo models and relevant ex vivo models. These studies have shown encouraging results of biomaterial-based local delivery of several types of drugs, mostly inhibitors of inflammatory cytokines or other degenerative factors. Prevention of inflammation and degeneration and pain relief was achieved, although mainly in small animal models, with interventions applied at an early disease stage. Less convincing data were obtained with the delivery of regenerative factors. Multidisciplinary efforts towards tackling the discord between in vitro and in vivo release, combined with adaptations in the regulatory landscape may be needed to enhance safe and expeditious introduction of more and more effective controlled release-based treatments with the OA and CLBP patients.
Collapse
|
17
|
The association of plasma IL-1Ra and related cytokines with radiographic severity of early knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100046. [DOI: 10.1016/j.ocarto.2020.100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
|
18
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
19
|
Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Single and repeated intra-articular injections in the tarsocrural joint with allogeneic and autologous equine bone marrow-derived mesenchymal stem cells are safe, but did not reduce acute inflammation in an experimental interleukin-1β model of synovitis. Equine Vet J 2020; 52:601-612. [PMID: 31821594 DOI: 10.1111/evj.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allogeneic and autologous bone marrow-derived mesenchymal stem cells (BMDMSCs) have been administered in equine joints for their anti-inflammatory effects. However, allogeneic BMDMSC offer multiple clinical and practical advantages. Therefore, it is important to determine the relative effectiveness of allogeneic vs autologous BMDMSCs. OBJECTIVES The objective of the study was to compare the inflamed joint response to autologous vs allogeneic BMDMSCs injections, and to determine if either treatment generated an anti-inflammatory effect. STUDY DESIGN Randomised controlled study. METHOD Bone marrow was harvested from eight horses. Autologous BMDMSCs and pooled allogeneic BMDMSCs were culture expanded, cryopreserved and thawed immediately prior to administration. Ten million autologous BMDMSCs were administered with 75 ng rIL-1β into one tarsocrural joint and the contralateral tarsocrural joint received allogeneic BMDMSC plus 75 ng rIL-1β. Repeat injections were performed with the same treatment administered into the same joint. Four additional horses received 75 ng rIL-1β alone in a single tarsocrural joint. Clinical parameters (lameness, joint circumference and joint effusion) and synovial fluid parameters, including nucleated cell count (NCC), differential cell count, total protein (TP), prostaglandin E2 (PGE2 ) and C-reactive protein (CRP), were measured at baseline, 6, 12, 24, 72, 168 and 336 hours post-injection. RESULTS No difference was detected between autologous and allogeneic treatment groups with respect to subjective lameness, joint effusion, joint circumference, NCC, TP, differential cell count, CRP or PGE2 . Neither autologous nor allogeneic treatments resulted in an improvement in clinical or cytological parameters over that elicited by rIL-1β alone. MAIN LIMITATIONS A single dose of rIL-1β was evaluated and resulted in a severe synovitis which may have been too severe to observe a BMDMSC-mediated effect. CONCLUSIONS This study revealed that allogeneic and autologous BMDMSCs resulted in an equivalent clinical and cytological response. Allogeneic and autologous BMDMSCs were equally ineffective in reducing the inflammatory response from acute rIL-1β-induced joint inflammation in horses.
Collapse
Affiliation(s)
- Aimée C Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Leone S Hopkins
- Department of Clinical Sciences, College of Veterinary Medicine, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer N Phillips
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
20
|
Inflammation-Modulating Hydrogels for Osteoarthritis Cartilage Tissue Engineering. Cells 2020; 9:cells9020419. [PMID: 32059502 PMCID: PMC7072320 DOI: 10.3390/cells9020419] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of the joint disease associated with age, obesity, and traumatic injury. It is a disabling degenerative disease that affects synovial joints and leads to cartilage deterioration. Despite the prevalence of this disease, the understanding of OA pathophysiology is still incomplete. However, the onset and progression of OA are heavily associated with the inflammation of the joint. Therefore, studies on OA treatment have sought to intra-articularly deliver anti-inflammatory drugs, proteins, genes, or cells to locally control inflammation in OA joints. These therapeutics have been delivered alone or increasingly, in delivery vehicles for sustained release. The use of hydrogels in OA treatment can extend beyond the delivery of anti-inflammatory components to have inherent immunomodulatory function via regulating immune cell polarization and activity. Currently, such immunomodulatory biomaterials are being developed for other applications, which can be translated into OA therapy. Moreover, anabolic and proliferative levels of OA chondrocytes are low, except initially, when chondrocytes temporarily increase anabolism and proliferation in response to structural changes in their extracellular environment. Therefore, treatments need to restore matrix protein synthesis and proliferation to healthy levels to reverse OA-induced damage. In conjugation with injectable and/or adhesive hydrogels that promote cartilage tissue regeneration, immunomodulatory tissue engineering solutions will have robust potential in OA treatment. This review describes the disease, its current and future immunomodulatory therapies as well as cartilage-regenerative injectable and adhesive hydrogels.
Collapse
|
21
|
Zoghebi KA, Bousoik E, Parang K, Elsaid KA. Design and Biological Evaluation of Colchicine-CD44-Targeted Peptide Conjugate in an In Vitro Model of Crystal Induced Inflammation. Molecules 2019; 25:E46. [PMID: 31877739 PMCID: PMC6982808 DOI: 10.3390/molecules25010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/23/2023] Open
Abstract
Gout is an inflammatory arthritis due to the joint deposition of monosodium urate (MSU) crystals. Phagocytosis of MSU crystals by tissue macrophages results in the generation of reactive oxygen species (ROS) and production of inflammatory cytokines and chemokines. Colchicine use in gout is limited by severe toxicity. CD44 is a transmembrane glycoprotein that is highly expressed in tissue macrophages and may be involved in gout pathogenesis. The P6 peptide is a 20-amino acid residue peptide that binds to CD44. We hypothesized that the conjugation of colchicine to the P6 peptide would reduce its off-target cytotoxicity while preserving its anti-inflammatory effect. A modified version of P6 peptide and colchicine-P6 peptide conjugate were synthesized using Fmoc/tBu solid-phase and solution-phase chemistry, respectively. A glutaryl amide was used as a linker. The P6 peptide was evaluated for its binding to CD44, association, and internalization by macrophages. Cytotoxic effects of P6 peptide, colchicine, and colchicine-P6 peptide on macrophages were compared and the inhibition of ROS generation and interleukin-8 (IL-8) secretion in MSU-stimulated macrophages treated with P6 peptide, colchicine, or colchicine-P6 peptide was studied. We confirmed that the P6 peptide binds to CD44 and its association and internalization by macrophages were CD44-dependent. Colchicine (1, 10, and 25 μM) demonstrated a significant cytotoxic effect on macrophages while the P6 peptide and colchicine-P6 peptide conjugate (1, 10 and 25 μM) did not alter the viability of the macrophages. The P6 peptide (10 and 25 μM) reduced ROS generation and IL-8 secretion mediated by a reduction in MSU phagocytosis by macrophages. The colchicine-P6 peptide significantly reduced ROS generation and IL-8 secretion compared to the P6 peptide alone at 1 and 10 μM concentrations. Conjugation of colchicine to the P6 peptide reduced the cytotoxic effect of colchicine while preserving its anti-inflammatory activity.
Collapse
Affiliation(s)
- Khalid A. Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (K.A.Z.); (E.B.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Emira Bousoik
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (K.A.Z.); (E.B.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (K.A.Z.); (E.B.)
| | - Khaled A. Elsaid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (K.A.Z.); (E.B.)
| |
Collapse
|
22
|
Kou L, Xiao S, Sun R, Bao S, Yao Q, Chen R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv 2019; 26:870-885. [PMID: 31524006 PMCID: PMC6758706 DOI: 10.1080/10717544.2019.1660434] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive and degenerative disease, which is no longer confined to the elderly. So far, current treatments are limited to symptom relief, and no valid OA disease-modifying drugs are available. Additionally, OA relative joint is challenging for drug delivery, since the drugs experience rapid clearance in joint, showing a poor bioavailability. Existing therapeutic drugs, like non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, are not conducive for long-term use due to adverse effects. Though supplementations, including chondroitin sulfate and glucosamine, have shown beneficial effects on joint tissues in OA, their therapeutic use is still debatable. New emerging agents, like Kartogenin (KGN) and Interleukin-1 receptor antagonist (IL-1 ra), without a proper formulation, still will not work. Therefore, it is urgent to establish a suitable and efficient drug delivery system for OA therapy. In this review, we pay attention to various types of drug delivery systems and potential therapeutic drugs that may escalate OA treatments.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res Ther 2019; 21:238. [PMID: 31722745 PMCID: PMC6854651 DOI: 10.1186/s13075-019-2003-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Most in vitro studies of potential osteoarthritis (OA) therapies have used cartilage monocultures, even though synovium is a key player in mediating joint inflammation and, thereby, cartilage degeneration. In the case of interleukin-1 (IL-1) inhibition using its receptor antagonist (IL-1Ra), like chondrocytes, synoviocytes also express IL-1 receptors that influence intra-articular IL-1 signaling and IL-1Ra efficacy. The short residence time of IL-1Ra after intra-articular injection requires the application of frequent dosing, which is clinically impractical and comes with increased risk of infection; these limitations motivate the development of effective drug delivery strategies that can maintain sustained intra-articular IL-1Ra concentrations with only a single injection. The goals of this study were to assess how the presence of synovium in IL-1-challenged cartilage-synovium co-culture impacts the time-dependent biological response of single and sustained doses of IL-1Ra, and to understand the mechanisms underlying any co-culture effects. Methods Bovine cartilage explants with or without synovium were treated with IL-1α followed by single or multiple doses of IL-1Ra. Effects of IL-1Ra in rescuing IL-1α-induced catabolism in cartilage monoculture and cartilage-synovium co-culture were assessed by measuring loss of glycosaminoglycans (GAGs) and collagen using DMMB (dimethyl-methylene blue) and hydroxyproline assays, respectively, nitric oxide (NO) release using Griess assay, cell viability by fluorescence staining, metabolic activity using Alamar blue, and proteoglycan biosynthesis by radiolabel incorporation. Day 2 conditioned media from mono and co-cultures were analyzed by mass spectrometry and cytokine array to identify proteins unique to co-culture that contribute to biological crosstalk. Results A single dose of IL-1Ra was ineffective, and a sustained dose was necessary to significantly suppress IL-1α-induced catabolism as observed by enhanced suppression of GAG and collagen loss, NO synthesis, rescue of chondrocyte metabolism, viability, and GAG biosynthesis rates. The synovium exhibited a protective role as the effects of single-dose IL-1Ra were significantly enhanced in cartilage-synovium co-culture and were accompanied by release of anti-catabolic factors IL-4, carbonic anhydrase-3, and matrilin-3. A total of 26 unique proteins were identified in conditioned media from co-cultures, while expression levels of many additional proteins important to cartilage homeostasis were altered in co-culture compared to monocultures; principal component analysis revealed distinct clustering between co-culture and cartilage and synovium monocultures, thereby confirming significant crosstalk. Conclusions IL-1Ra suppresses cytokine-induced catabolism in cartilage more effectively in the presence of synovium, which was associated with endogenous production of anti-catabolic factors. Biological crosstalk between cartilage and synovium is significant; thus, their co-cultures should better model the intra-articular actions of potential OA therapeutics. Additionally, chondroprotective effects of IL-1Ra require sustained drug levels, underscoring the need for developing drug delivery strategies to enhance its joint residence time following a single intra-articular injection.
Collapse
|
24
|
Tashkandi M, Ali F, Alsaqer S, Alhousami T, Cano A, Martin A, Salvador F, Portillo F, C Gerstenfeld L, Goldring MB, Bais MV. Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. Int J Mol Sci 2019; 20:ijms20194798. [PMID: 31569601 PMCID: PMC6801581 DOI: 10.3390/ijms20194798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The goal of this study was to determine if adenovirus-delivered LOXL2 protects against progressive knee osteoarthritis (OA), assess its specific mechanism of action; and determine if the overexpression of LOXL2 in transgenic mice can protect against the development of OA-related cartilage damage and joint disability. Methods: Four-month-old Cho/+ male and female mice were intraperitoneally injected with either Adv-RFP-LOXL2 or an empty vector twice a month for four months. The proteoglycan levels and the expression of anabolic and catabolic genes were examined by immunostaining and qRT-PCR. The effect of LOXL2 expression on signaling was tested via the pro-inflammatory cytokine IL1β in the cartilage cell line ATDC5. Finally; the OA by monosodium iodoacetate (MIA) injection was also induced in transgenic mice with systemic overexpression of LOXL2 and examined gene expression and joint function by treadmill tests and assessment of allodynia. Results: The adenovirus treatment upregulated LOXL2; Sox9; Acan and Runx2 expression in both males and females. The Adv-RFP-LOXL2 injection; but not the empty vector injection increased proteoglycan staining and aggrecan expression but reduced MMP13 expression. LOXL2 attenuated IL-1β-induced phospho-NF-κB/p65 and rescued chondrogenic lineage-related genes in ATDC5 cells; demonstrating one potential protective mechanism. LOXL2 attenuated phospho-NF-κB independent of its enzymatic activity. Finally; LOXL2-overexpressing transgenic mice were protected from MIA-induced OA-related functional changes; including the time and distance traveled on the treadmill and allodynia. Conclusion: Our study demonstrates that systemic LOXL2 adenovirus or LOXL2 genetic overexpression in mice can protect against OA. These findings demonstrate the potential for LOXL2 gene therapy for knee-OA clinical treatment in the future.
Collapse
Affiliation(s)
- Mustafa Tashkandi
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
- Department of Periodontology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Faiza Ali
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Saqer Alsaqer
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Thabet Alhousami
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Alberto Martin
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Fernando Salvador
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Francisco Portillo
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer. Av Monforte de Lemos, 3-5, Pabellón 11, planta 0, 28029 Madrid, Spain.
| | - Louis C Gerstenfeld
- Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Mary B Goldring
- Hospital for Special Surgery Research Institute, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Manish V Bais
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| |
Collapse
|
25
|
Abstract
The concept of interleukin-1 (IL-1) as a target in osteoarthritis (OA) has been an attractive one for many years. It is a highly potent inducer of cartilage degradation, causing the induction of mRNA and controlling the bioavailability of disease-relevant proteases such as ADAMTS5 and MMP13. It drives synovitis and can induce other disease-relevant genes such as nerve growth factor, a key pain sensitiser in OA. However, the quality of evidence for its involvement in disease is modest. Descriptive studies have demonstrated expression of IL-1α and β in OA cartilage and elevated levels in the synovial fluid of some patients. Agnostic transcriptomic and genomic analyses do not identify IL-1 as a key pathway.
In vivo models show a conflicting role for this molecule; early studies using therapeutic approaches in large animal models show a benefit, but most murine studies fail to demonstrate protection where the ligands (IL-1α/β), the cytokine activator (IL-1–converting enzyme), or the receptor (IL-1R) have been knocked out. Recently, a number of large double-blind randomised controlled clinical studies targeting IL-1 have failed. Enthusiasm for IL-1 as a target in OA is rapidly dwindling.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| |
Collapse
|
26
|
Deng Z, Gao X, Sun X, Amra S, Lu A, Cui Y, Eltzschig HK, Lei G, Huard J. Characterization of articular cartilage homeostasis and the mechanism of superior cartilage regeneration of MRL/MpJ mice. FASEB J 2019; 33:8809-8821. [PMID: 31042406 DOI: 10.1096/fj.201802132rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study investigated articular cartilage (AC) homeostasis and different signaling pathways involved in the superior cartilage regeneration of Murphy Roths large (MRL/MpJ) mice previously reported. We collected uninjured and destabilized medial meniscus (DMM)-injured knees from 8-wk-old C57BL/6J and MRL/MpJ mice. We used micro-computed tomography (microCT), histology, and immunohistochemistry to evaluate AC homeostasis and repair. We used the ear punch model to investigate the role of angiogenesis and inflammation in the superior healing of MRL/MpJ mice. We found fewer β-catenin and more pSMAD5 positive cells in the uninjured AC of MRL/MpJ mice than that from C57BL/6J mice. MRL/MpJ mice exhibited better AC repair in DMM-induced OA, as indicated by microCT results, Alcian blue, and Safranin O staining. Mechanistically, fewer β-catenin, pSMAD2-, pSMAD3-, a disintegrin and metalloproteinase with thrombospondin motifs 4-, matrix metalloproteinase (MMP) 9-, and MMP13-positive cells and more proliferating cell nuclear antigen- and pSMAD5-positive cells were found in the DMM-injured AC in MRL/MpJ mice than in normal mice. The accelerated ear wound healing of MRL/MpJ mice correlated with enhanced angiogenesis and macrophage polarization toward the M2a phenotype through elevated IL-10 and IL-4 expressing cells. Collectively, our study revealed that down-regulation of pSMAD2/3, β-catenin, and MMPs and up-regulation of pSMAD5 and M2a macrophage polarization contribute to the enhanced cartilage repair observed in MRL/MpJ mice.-Deng, Z., Gao, X., Sun, X., Amra, S., Lu, A., Cui, Y., Eltzschig, H. K., Lei, G., Huard, J. Characterization of articular cartilage homeostasis and the mechanism of superior cartilage regeneration of MRL/MpJ mice.
Collapse
Affiliation(s)
- Zhenhan Deng
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqin Gao
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA; and
| | - Xuying Sun
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sarah Amra
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA; and
| | - Yan Cui
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Johnny Huard
- Department of Orthopedic Surgery, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA; and
| |
Collapse
|
27
|
Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Induction of Synovitis Using Interleukin-1 Beta: Are There Differences in the Response of Middle Carpal Joint Compared to the Tibiotarsal Joint? Front Vet Sci 2018; 5:208. [PMID: 30234134 PMCID: PMC6127273 DOI: 10.3389/fvets.2018.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background: The effects of recombinant interleukin-1β (rIL-1β) have been described for the middle carpal joint (MCJ). However, we are unaware of any studies that have described the cytological response of the tibiotarsal joint (TTJ) to rIL-1β or compared the clinical and cytological responses of the MCJ to the TTJ following the administration of intra-articular rIL-1β. Such information is critical for researchers planning to use rIL-1β to create acute synovitis models in horses. Objectives: To compare the clinical and cytological responses of the MCJ to the TTJ following administration of intra-articular rIL-1β. Methods: Twelve horses were used for the study. Eight horses received 75 ng of rIL-1β into the MCJ and four horses received 75 ng of rIL-1β into the TTJ. Clinical and cytological outcome parameters including lameness, joint circumference, joint effusion score, total nucleated cell count, cellular differentials, C-reactive protein, and prostaglandin-E2 concentrations were determined at baseline and multiple post-treatment time points over a 336 h period (2 weeks). Results: Recombinant IL-1β administered into the TTJ resulted in a significantly greater respiratory rate at 24 h and heart rate at 12 h when compared to rIL-1β administered into the MCJ. In addition, the TTJ had a significantly greater increase in joint circumference at 24 post-injection hour (PIH) and subjective effusion grade at 24 PIH and 336 PIH. The MCJ had significantly higher total protein concentration at 6 PIH, and a significantly higher NCC at 24 and 72 PIH when compared to the TTJ. Conversely, the TTJ had significantly higher neutrophilic infiltration than the MCJ at 6 PIH and 168 PIH. Conclusions: This study establishes that the same intra-articular dose of rIL-1 β elicits significantly different clinical and cytological responses in the MCJ compared to the TTJ in the equine model of intra-articular synovitis. In addition, clinical and cytological evidence of synovitis may persist up to or >1 week following intra-articular administration of rIL-1 β.
Collapse
Affiliation(s)
- Aimee C Colbath
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven W Dow
- Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Leone S Hopkins
- Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Phillips
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C Wayne McIlwraith
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie R Goodrich
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States.,Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
28
|
Clements AEB, Groves ER, Chamberlain CS, Vanderby R, Murphy WL. Microparticles Locally Deliver Active Interleukin-1 Receptor Antagonist In Vivo. Adv Healthc Mater 2018; 7:e1800263. [PMID: 29974661 DOI: 10.1002/adhm.201800263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/23/2018] [Indexed: 11/11/2022]
Abstract
Despite significant research in therapeutic protein delivery, localized and sustained delivery of active therapeutic proteins remains a challenge. Delivery is a particular challenge for therapeutic proteins with a short half-life. Herein, localized delivery of interleukin-1 receptor antagonist (IL-1Ra) by mineral coated microparticles (MPs) is assessed in a healing rat medial collateral ligament (MCL). The local tissue concentration and systemic serum concentration of IL-1Ra, the anti-inflammatory activity of IL-1Ra delivered with MPs, and whether IL-1Ra loaded MPs (IL-1Ra MPs) are immunogenic in a healing ligament are also examined. IL-1Ra MPs significantly increase the local concentration of IL-1Ra compared to soluble IL-1Ra at 7 and 14 days after treatment but do not elevate the systemic concentration of IL-1Ra at these time points, indicating localized delivery of IL-1Ra. IL-1Ra MPs significantly reduce inflammation caused by the MPs themselves, indicating the IL-1Ra is active. Finally, IL-1Ra MPs do not induce a foreign body response and decrease the immunogenicity of human IL-1Ra in a healing rat MCL. Overall, mineral coated microparticles have the ability to locally deliver active therapeutic proteins for an extended period of time.
Collapse
Affiliation(s)
- Anna E. B. Clements
- University of Wisconsin; Madison, 1111 Highland Ave., 5405 WIMR II Madison WI 53705 USA
| | - Emily R. Groves
- University of Wisconsin; Madison, 1111 Highland Ave., 5405 WIMR II Madison WI 53705 USA
| | - Connie S. Chamberlain
- University of Wisconsin; Madison, 1111 Highland Ave., 5405 WIMR II Madison WI 53705 USA
| | - Ray Vanderby
- University of Wisconsin; Madison, 1111 Highland Ave., 5405 WIMR II Madison WI 53705 USA
| | - William L. Murphy
- University of Wisconsin; Madison, 1111 Highland Ave., 5405 WIMR II Madison WI 53705 USA
| |
Collapse
|
29
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
30
|
Zhang J, Qi X, Luo X, Li D, Wang H, Li T. Clinical and immunohistochemical performance of lyophilized platelet-rich fibrin (Ly-PRF) on tissue regeneration. Clin Implant Dent Relat Res 2017; 19:466-477. [PMID: 28192870 DOI: 10.1111/cid.12473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/26/2016] [Accepted: 12/26/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) has been widely used in oral implantology and other fields, but benefits of the fresh PRF (FPRF (fresh platelet-rich fibrin)) were consequently limited because of its short-term application. Thus, a protocol for the combination of PRF and lyophilization comes up in the present study to address the issue of PRF storage and delayed clinical application, which has little been reported in this field at home and abroad by now. PURPOSE The aim of the present study was to evaluate the applicability of lyophilized platelet-rich fibrin (Ly-PRF) used as the scaffold material for craniofacial tissue regeneration and to compare its biochemical properties with commonly used fresh PRF. MATERIALS AND METHODS Two volunteers with both genders were selected as the source of PRF and Ly-PRF samples. Macro- and micro-scopic appearance evaluation as well as immunohistochemical comparison were performed on PRF samples before and after freeze-drying at -196°C. The second experimental phase was to observe clinical performance when fresh and lyophilized PRF were applied in guided bone regeneration (GBR) operations in 39 patients losing teeth in the anterior maxillary region who required an oral implantation followed by labial bone grafting. RESULTS The conventional histological and transmission electron microscopy images showed the microstructure of Ly-PRF, which resembled a mesh containing apparently irregularly shaped platelets with less alpha-granule than fresh PRF in micro and a translucent membrane with less elasticity than fresh PRF in macro. Simultaneous immunohistological staining results showed positive expression of PDGF-BB, IL-1, IL-4, TNF, TGF-β1 in both fresh and lyophilized PRF, while the expression of PDGF-BB, IL-1, TNF, TGF-β1 has no statistical difference between them (P > .05) but that of IL-4 in Ly-PRF is statistically higher than in fresh PRF (P < .05). When applied in GBR operations, there were no significant differences between Ly-PRF and FPRF in factors of histological and clinical evaluations (i.e., color, swelling, bleeding of the mucosa, pain leveland, and remodeling of hard tissue) performed 3 days, 7 days, and 4 months after the surgery (P > .05). CONCLUSIONS This study strongly supports that lyophilization at -196°C does not largely influence the expression of bioactive factors, the microstructure of fibrinogen or the clinical effects of PRF.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of Stomatology, General Hospital, Tianjin Medical University, Tianjin, 300052, People's Republic of China
| | - Xingying Qi
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaoding Luo
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Dan Li
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Haorong Wang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ting Li
- Academic Committe, Bybo Dental Group, Beijing, 100062, People's Republic of China
| |
Collapse
|
31
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|