1
|
Pogarell T, Heiss R, Janka R, Nagel AM, Uder M, Roemer FW. Modern low-field MRI. Skeletal Radiol 2024; 53:1751-1760. [PMID: 38381197 PMCID: PMC11303481 DOI: 10.1007/s00256-024-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
This narrative review explores recent advancements and applications of modern low-field (≤ 1 Tesla) magnetic resonance imaging (MRI) in musculoskeletal radiology. Historically, high-field MRI systems (1.5 T and 3 T) have been the standard in clinical practice due to superior image resolution and signal-to-noise ratio. However, recent technological advancements in low-field MRI offer promising avenues for musculoskeletal imaging. General principles of low-field MRI systems are being introduced, highlighting their strengths and limitations compared to high-field counterparts. Emphasis is placed on advancements in hardware design, including novel magnet configurations, gradient systems, and radiofrequency coils, which have improved image quality and reduced susceptibility artifacts particularly in musculoskeletal imaging. Different clinical applications of modern low-field MRI in musculoskeletal radiology are being discussed. The diagnostic performance of low-field MRI in diagnosing various musculoskeletal pathologies, such as ligament and tendon injuries, osteoarthritis, and cartilage lesions, is being presented. Moreover, the discussion encompasses the cost-effectiveness and accessibility of low-field MRI systems, making them viable options for imaging centers with limited resources or specific patient populations. From a scientific standpoint, the amount of available data regarding musculoskeletal imaging at low-field strengths is limited and often several decades old. This review will give an insight to the existing literature and summarize our own experiences with a modern low-field MRI system over the last 3 years. In conclusion, the narrative review highlights the potential clinical utility, challenges, and future directions of modern low-field MRI, offering valuable insights for radiologists and healthcare professionals seeking to leverage these advancements in their practice.
Collapse
Affiliation(s)
- Tobias Pogarell
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany.
| | - Rafael Heiss
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Frank W Roemer
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Germany
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Buijs GS, Kooijenga AC, Rikken QGH, Schafroth MU, Kievit AJ, Blankevoort L. MRI and SPECT/CT demonstrate, with low certainty of evidence, the highest diagnostic accuracy for aseptic knee arthroplasty loosening: A systematic comparative diagnostic test review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2024; 32:2061-2074. [PMID: 38769774 DOI: 10.1002/ksa.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE The purpose of this study was to evaluate and compare the diagnostic accuracy of modalities used to aid the diagnosis of aseptic knee arthroplasty loosening. METHODS A comparative diagnostic test accuracy systematic review and meta-analysis was conducted following the Cochrane and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, EMBASE and Cochrane databases were searched for original articles evaluating diagnostic modalities up to March 2024. Included studies compared the modality (index test) to the intraoperative finding as reference test. The QUADAS-C (Quality Assessment of Diagnostic Accuracy Studies-Comparative) tool was used to assess the quality of the included studies. The GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach was used to evaluate the certainty of evidence. Level of evidence was evaluated using the Oxford Levels of Evidence tool. The primary outcome was the summary of diagnostic accuracy metrics for each modality as demonstrated by a summary receiver-operating characteristic (SROC) curve. RESULTS The search yielded 467 articles. Of these, 14 articles were included. These 14 articles evaluated a total of five different diagnostic modalities: bone scintigraphy (three studies, 146 cases), 18-fluorodeoxyglucose positron emission tomography (two studies, 50 cases), single-photon emission computed tomography combined with computed tomography (SPECT/CT) (seven studies, 371 cases), radionuclide arthrogram (three studies, 196 cases) and magnetic resonance imaging (MRI) (one study, 116 cases). Nine studies exhibited a high risk of bias in patient selection, and all studies showed a high risk of bias related to the reference test. The majority of the included studies were classified as Level III evidence, leading to an overall low level of certainty in the evidence. The most accurate tests, as demonstrated by the SROC analysis, were MRI and SPECT/CT, with sensitivities ranging from 0.00 to 1.00 and 0.33 to 1.00 and specificities between 0.31-1.00 and 0.00-1.00, respectively. CONCLUSIONS This review and meta-analysis evaluated available diagnostic modalities to aid the diagnosis of knee arthroplasty loosening and based on a low certainty of evidence suggests that MRI and SPECT/CT are currently the most accurate modalities available to aid the diagnosis of aseptic loosening of knee arthroplasty components. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- George S Buijs
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Anne C Kooijenga
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Quinten G H Rikken
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Matthias U Schafroth
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Arthur J Kievit
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Leendert Blankevoort
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mašková B, Rožánek M, Gajdoš O, Karnoub E, Kamenský V, Donin G. Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review. Diagnostics (Basel) 2024; 14:1564. [PMID: 39061702 PMCID: PMC11276230 DOI: 10.3390/diagnostics14141564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In recent years, there has been an increasing effort to take advantage of the potential use of low magnetic induction devices with less than 1 T, referred to as Low-Field MRI (LF MRI). LF MRI systems were used, especially in the early days of magnetic resonance technology. Over time, magnetic induction values of 1.5 and 3 T have become the standard for clinical devices, mainly because LF MRI systems were suffering from significantly lower quality of the images, e.g., signal-noise ratio. In recent years, due to advances in image processing with artificial intelligence, there has been an increasing effort to take advantage of the potential use of LF MRI with induction of less than 1 T. This overview article focuses on the analysis of the evidence concerning the diagnostic efficacy of modern LF MRI systems and the clinical comparison of LF MRI with 1.5 T systems in imaging the nervous system, musculoskeletal system, and organs of the chest, abdomen, and pelvis. METHODOLOGY A systematic literature review of MEDLINE, PubMed, Scopus, Web of Science, and CENTRAL databases for the period 2018-2023 was performed according to the recommended PRISMA protocol. Data were analysed to identify studies comparing the accuracy, reliability and diagnostic performance of LF MRI technology compared to available 1.5 T MRI. RESULTS A total of 1275 publications were retrieved from the selected databases. Only two articles meeting all predefined inclusion criteria were selected for detailed assessment. CONCLUSIONS A limited number of robust studies on the accuracy and diagnostic performance of LF MRI compared with 1.5 T MRI was available. The current evidence is not sufficient to draw any definitive insights. More scientific research is needed to make informed conclusions regarding the effectiveness of LF MRI technology.
Collapse
Affiliation(s)
| | - Martin Rožánek
- Department of Biomedical Technology, Czech Technical University in Prague, 272 01 Kladno, Czech Republic; (B.M.); (O.G.); (E.K.); (V.K.); (G.D.)
| | | | | | | | | |
Collapse
|
4
|
Sculco PK, Flevas DA, Jerabek SA, Jiranek WA, Bostrom MP, Haddad FS, Fehring TK, Gonzalez Della Valle A, Berry DJ, Brenneis M, Bornes TD, Rojas Marcos CE, Wright TM, Sculco TP. Management of Bone Loss in Revision Total Knee Arthroplasty: An International Consensus Symposium. HSS J 2024; 20:141-181. [PMID: 39281983 PMCID: PMC11393633 DOI: 10.1177/15563316231202750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 09/18/2024]
Abstract
The evaluation, classification, and treatment of significant bone loss after total knee arthroplasty (TKA) continue to be a complex and debated topic in revision TKA (rTKA). Despite the introduction of new evidence and innovative technologies aimed at addressing the approach and care of severe bone loss in rTKA, there is no single document that systematically incorporates these newer surgical approaches. Therefore, a comprehensive review of the treatment of severe bone loss in rTKA is necessary. The Stavros Niarchos Foundation Complex Joint Reconstruction Center Hospital for Special Surgery, dedicated to clinical care and research primarily in revision hip and knee replacement, convened a Management of Bone Loss in Revision TKA symposium on June 24, 2022. At this meeting, the 42 international invited experts were divided into groups; each group was assigned to discuss questions related to 1 of the 4 topics: (1) assessing preoperative workup and imaging, anticipated bone loss, classification system, and implant surveillance; (2) achieving durable fixation in the setting of significant bone loss in revision TKA; (3) managing patellar bone loss and the extensor mechanism in cases of severe bone loss; and (4) considering the use of complex modular replacement systems: hinges, distal femoral, and proximal tibial replacements. Each group came to consensus, when possible, based on an extensive literature review and interactive discussion on their group topic. This document reviews each these 4 areas, the consensus of each group, and directions for future research.
Collapse
Affiliation(s)
- Peter Keyes Sculco
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Dimitrios A Flevas
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | | | - William A Jiranek
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA
| | | | - Fares S Haddad
- University College London Hospitals NHS Foundation Trust, London, UK
- The Bone & Joint Journal, London, UK
| | - Thomas K Fehring
- Hip & Knee Center, OrthoCarolina, Charlotte, NC, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| | | | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Marco Brenneis
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Troy D Bornes
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Carolena E Rojas Marcos
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | | | - Thomas P Sculco
- Hospital for Special Surgery, New York, NY, USA
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
5
|
Pogarell T, May MS, Nagel AM, Uder M, Heiss R. [Imaging of the musculoskeletal system using low-field magnetic resonance imaging]. Radiologe 2022; 62:410-417. [PMID: 35416477 DOI: 10.1007/s00117-022-01000-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) plays a crucial role in musculoskeletal imaging. The high prevalence and pain-related suffering of patients pose a particular challenge concerning availability and turnover times, respectively. Low-field (≤ 1.0 T) MRI has the potential to fulfill these needs. However, during the past three decades, high field systems have increasingly replaced low field systems because of their limitations in image quality. Recent technological advancements in high-performance hard- and software promise musculoskeletal imaging with adequate quality at lower field strengths for several regions and indications. OBJECTIVES The goal is to provide insight into the advantages and disadvantages of low-field musculoskeletal imaging, discuss the current literature, and include our first experiences with a modern 0.55 T MRI. MATERIALS AND METHODS This review is based on research in various literature databases and our own musculoskeletal imaging experiences with a modern 0.55 T scanner. CONCLUSION Most publications pertaining to musculoskeletal imaging at low-field strength MRI are outdated, and studies regarding the diagnostic performance of modern low-field MRI systems are needed. These new systems may complement existing high-field systems and make MRI more accessible, even in low-income countries. From our own experience, modern low-field MRI seems to be adequate in musculoskeletal imaging, especially in acute injuries.
Collapse
Affiliation(s)
- Tobias Pogarell
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Deutschland
| | - Matthias S May
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Deutschland.,Imaging Science Institute, Universitätsklinikum Erlangen, Erlangen, Deutschland
| | - Armin M Nagel
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Deutschland.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Deutschland
| | - Michael Uder
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Deutschland.,Imaging Science Institute, Universitätsklinikum Erlangen, Erlangen, Deutschland
| | - Rafael Heiss
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Maximiliansplatz 3, 91054, Erlangen, Deutschland. .,Imaging Science Institute, Universitätsklinikum Erlangen, Erlangen, Deutschland.
| |
Collapse
|
6
|
Florkow MC, Willemsen K, Mascarenhas VV, Oei EHG, van Stralen M, Seevinck PR. Magnetic Resonance Imaging Versus Computed Tomography for Three-Dimensional Bone Imaging of Musculoskeletal Pathologies: A Review. J Magn Reson Imaging 2022; 56:11-34. [PMID: 35044717 PMCID: PMC9305220 DOI: 10.1002/jmri.28067] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) is increasingly utilized as a radiation‐free alternative to computed tomography (CT) for the diagnosis and treatment planning of musculoskeletal pathologies. MR imaging of hard tissues such as cortical bone remains challenging due to their low proton density and short transverse relaxation times, rendering bone tissues as nonspecific low signal structures on MR images obtained from most sequences. Developments in MR image acquisition and post‐processing have opened the path for enhanced MR‐based bone visualization aiming to provide a CT‐like contrast and, as such, ease clinical interpretation. The purpose of this review is to provide an overview of studies comparing MR and CT imaging for diagnostic and treatment planning purposes in orthopedic care, with a special focus on selective bone visualization, bone segmentation, and three‐dimensional (3D) modeling. This review discusses conventional gradient‐echo derived techniques as well as dedicated short echo time acquisition techniques and post‐processing techniques, including the generation of synthetic CT, in the context of 3D and specific bone visualization. Based on the reviewed literature, it may be concluded that the recent developments in MRI‐based bone visualization are promising. MRI alone provides valuable information on both bone and soft tissues for a broad range of applications including diagnostics, 3D modeling, and treatment planning in multiple anatomical regions, including the skull, spine, shoulder, pelvis, and long bones.
Collapse
Affiliation(s)
- Mateusz C Florkow
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen Willemsen
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vasco V Mascarenhas
- Musculoskeletal Imaging Unit, Imaging Center, Hospital da Luz, Lisbon, Portugal
| | - Edwin H G Oei
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn van Stralen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,MRIguidance BV, Utrecht, The Netherlands
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,MRIguidance BV, Utrecht, The Netherlands
| |
Collapse
|
7
|
Germann C, Nanz D, Sutter R. Magnetic Resonance Imaging Around Metal at 1.5 Tesla: Techniques From Basic to Advanced and Clinical Impact. Invest Radiol 2021; 56:734-748. [PMID: 34074944 DOI: 10.1097/rli.0000000000000798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT During the last decade, metal artifact reduction in magnetic resonance imaging (MRI) has been an area of intensive research and substantial improvement. The demand for an excellent diagnostic MRI scan quality of tissues around metal implants is closely linked to the steadily increasing number of joint arthroplasty (especially knee and hip arthroplasties) and spinal stabilization procedures. Its unmatched soft tissue contrast and cross-sectional nature make MRI a valuable tool in early detection of frequently encountered postoperative complications, such as periprosthetic infection, material wear-induced synovitis, osteolysis, or damage of the soft tissues. However, metal-induced artifacts remain a constant challenge. Successful artifact reduction plays an important role in the diagnostic workup of patients with painful/dysfunctional arthroplasties and helps to improve patient outcome. The artifact severity depends both on the implant and the acquisition technique. The implant's material, in particular its magnetic susceptibility and electrical conductivity, its size, geometry, and orientation in the MRI magnet are critical. On the acquisition side, the magnetic field strength, the employed imaging pulse sequence, and several acquisition parameters can be optimized. As a rule of thumb, the choice of a 1.5-T over a 3.0-T magnet, a fast spin-echo sequence over a spin-echo or gradient-echo sequence, a high receive bandwidth, a small voxel size, and short tau inversion recovery-based fat suppression can mitigate the impact of metal artifacts on diagnostic image quality. However, successful imaging of large orthopedic implants (eg, arthroplasties) often requires further optimized artifact reduction methods, such as slice encoding for metal artifact correction or multiacquisition variable-resonance image combination. With these tools, MRI at 1.5 T is now widely considered the modality of choice for the clinical evaluation of patients with metal implants.
Collapse
|