1
|
Alshammari MB, Ahmad A, Ibrahim MNM, Rosli NFB. Degradation of resorcinol and oxidation of pineapple waste to improve the energy potential through microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9926-9944. [PMID: 40163195 DOI: 10.1007/s11356-025-36300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Microbial fuel cells (MFCs) offer a promising approach to remediate organic pollutants while generating energy. Despite significant advancements, generating electrons remains a major challenge for MFCs. This study addresses the electron production challenges in MFCs using pineapple waste as an organic substrate and resorcinol as a pollutant and carbon source. At a constant 1000 Ω external resistance, the maximum power density (PD) achieved was 2.69 mW/m2. Electrochemical studies, including cyclic voltammetry (CV), indicated efficient oxidation and reduction of the substrate, with a specific capacitance of 1.36 × 10⁻⁷ F/g, suggesting gradual biofilm formation. The electrochemical impedance spectroscopy (EIS) findings confirmed efficient electron transport and resorcinol biodegradation reached 84.66%. Bacterial identification revealed that Proteus vulgaris, Hafnia alvei, and Yersinia enterocolitica significantly contributed to resorcinol degradation and energy generation. Optimal MFC operation was observed at pH 7 and temperatures of 25-30 °C. Overall, pineapple substrates, with their polysaccharide composition, maintained stability for 40 days. The study concludes by highlighting future challenges and potential improvements.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, City Al-Kharj, 11942, Saudi Arabia.
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, City Al-Kharj, 11942, Saudi Arabia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (Matrec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Nur Faezah Binti Rosli
- Materials Technology Research Group (Matrec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2025; 16:235-265. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
3
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Gong Z, Chen J, Jiao X, Gong H, Pan D, Liu L, Zhang Y, Tan T. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects. Biotechnol Adv 2024; 72:108319. [PMID: 38280495 DOI: 10.1016/j.biotechadv.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.
Collapse
Affiliation(s)
- Zhijin Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayao Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Jiao
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Danzi Pan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingli Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Arnodo D, De Nardi F, Parisotto S, De Nardo E, Cananà S, Salvatico F, De Marchi E, Scarpi D, Blangetti M, Occhiato EG, Prandi C. Asymmetric Reduction of Cyclic Imines by Imine Reductase Enzymes in Non-Conventional Solvents. CHEMSUSCHEM 2024; 17:e202301243. [PMID: 37751248 DOI: 10.1002/cssc.202301243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
The first enantioselective reduction of 2-substituted cyclic imines to the corresponding amines (pyrrolidines, piperidines, and azepines) by imine reductases (IREDs) in non-conventional solvents is reported. The best results were obtained in a glycerol/phosphate buffer 1 : 1 mixture, in which heterocyclic amines were produced with full conversions (>99 %), moderate to good yields (22-84 %) and excellent S-enantioselectivities (up to >99 % ee). Remarkably, the process can be performed at a 100 mM substrate loading, which, for the model compound, means a concentration of 14.5 g L-1 . A fed-batch protocol was also developed for a convenient scale-up transformation, and one millimole of substrate 1 a was readily converted into 120 mg of enantiopure amine (S)-2 a with a remarkable 80 % overall yield. This aspect strongly contributes to making the process potentially attractive for large-scale applications in terms of economic and environmental sustainability for a good number of substrates used to produce enantiopure cyclic amines of high pharmaceutical interest.
Collapse
Affiliation(s)
- Davide Arnodo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Federica De Nardi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Eugenio De Nardo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefania Cananà
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
- Scuola Universitaria Superiore I.U.S.S. Pavia, Piazza Vittoria 15, 2700, Pavia, Italy
| | - Federica Salvatico
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Elisa De Marchi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Dina Scarpi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Ernesto G Occhiato
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
6
|
Gan J, Iqbal HMN, Show PL, Rahdar A, Bilal M. Upgrading recalcitrant lignocellulosic biomass hydrolysis by immobilized cellulolytic enzyme–based nanobiocatalytic systems: a review. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:4485-4509. [DOI: 10.1007/s13399-022-02642-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023]
|
7
|
Singh AK, Pandey AK, Kumar M, Paul T, Gaur NA. Improved xylitol production by the novel inhibitor-tolerant yeast Candida tropicalis K2. ENVIRONMENTAL TECHNOLOGY 2024; 45:1-15. [PMID: 35762251 DOI: 10.1080/09593330.2022.2095227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Production of potential value-added products from different lignocellulosic biomass is becoming more common due to the availability of the feedstocks in abundance and the environment- friendly nature of the microbial production process. Due to the large array of its applications in the pharmaceutical and food sectors, xylitol is considered as potential value-added compound for production. In this study, organic waste samples were collected from various habitats and screened for potential yeast isolates for xylitol production. Among 124 tested isolates, Candida tropicalis K2 showed the highest potential for xylitol production as well as inhibitors tolerance (Furfural, 5-hydroxymethyl furfural and acetic acid) phenotypes. C. tropicalis K2 produced 90 g/L of xylitol in batch fermentation (100 g/L xylose supplemented with 20 g/L of glycerol as co-substrate) with the yield and productivity of 0.90 g/g and 1.5 g/L.h, respectively, at pH 5.5 and 30°C temperature. Together, >10% higher xylitol yield was achieved when glycerol was used as a co-substrate with pure xylose. Moreover, with non-detoxified corncob and Albizia pod hydrolysates, C. tropicalis K2 isolate produced 0.62 and 0.69 g/g of xylitol yields and 1.04 and 0.75 g/L.h xylitol productivities, respectively. Thus, C. tropicalis K2 isolate could be considered as promising candidate for xylitol production from different lignocellulosic biomass.HIGHLIGHTS Candia tropicalis K2 isolate was screened from natural sites of biomass degradation and characterized for xylitol production.Non-detoxified Albizia pod and corncob hydrolysates were explored for xylitol production using selected C. tropicalis K2 isolate.A maximum of 0.90 g/g yield and 1.07 g/L.h xylitol productivity was achieved with pure xylose.A >10% increase in xylitol yield was achieved using glycerol as a co-substrate.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Life Sciences and Biotechnology, School of Biological Sciences and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tanushree Paul
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Thiruvalluvan M, Kaur BP, Singh A, Kumari S. Enhancement of the bioavailability of phenolic compounds from fruit and vegetable waste by liposomal nanocarriers. Food Sci Biotechnol 2024; 33:307-325. [PMID: 38222914 PMCID: PMC10786787 DOI: 10.1007/s10068-023-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024] Open
Abstract
Fruits and vegetables are one of the most consumed and processed commodities globally and comprise abundant phenolic compounds, one of the main nutraceuticals in the food industry. Comparably elevated rates of these compounds are found in waste (peel, seeds, leaf, stem, etc.) in the food processing industry. They are being investigated for their potential use in functional foods. However, phenolic compounds' low bioavailability limits their application, which can be approached by loading the phenolic compounds into an encapsulation system such as liposomal carriers. This review aims to elucidate the recent trend in extracting phenolic compounds from the waste stream and the means to load them in stable liposomes. Furthermore, the application of these liposomes with only natural extracts in food matrices is also presented. Many studies have indicated that liposomes can be a proper candidate for encapsulating and delivering phenolic compounds and as a means to increase their bioavailability.
Collapse
Affiliation(s)
- Manonmani Thiruvalluvan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Sanjana Kumari
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| |
Collapse
|
9
|
Han Y, Tafur Rangel A, Pomraning KR, Kerkhoven EJ, Kim J. Advances in genome-scale metabolic models of industrially important fungi. Curr Opin Biotechnol 2023; 84:103005. [PMID: 37797483 DOI: 10.1016/j.copbio.2023.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Many fungal species have been used industrially for production of biofuels and bioproducts. Developing strains with better performance in biomanufacturing contexts requires a systematic understanding of cellular metabolism. Genome-scale metabolic models (GEMs) offer a comprehensive view of interconnected pathways and a mathematical framework for downstream analysis. Recently, GEMs have been developed or updated for several industrially important fungi. Some of them incorporate enzyme constraints, enabling improved predictions of cell states and proteome allocation. Here, we provide an overview of these newly developed GEMs and computational methods that facilitate construction of enzyme-constrained GEMs and utilize flux predictions from GEMs. Furthermore, we highlight the pivotal roles of these GEMs in iterative design-build-test-learn cycles, ultimately advancing the field of fungal biomanufacturing.
Collapse
Affiliation(s)
- Yichao Han
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kyle R Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Joint BioEnergy Institute, Department of Energy, Emeryville, CA, USA.
| |
Collapse
|
10
|
Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, Garcia-Verdugo E, Triantafyllidis KS, Richel A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv 2023; 13:21395-21420. [PMID: 37469965 PMCID: PMC10352963 DOI: 10.1039/d3ra01533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| | - Antigoni Margellou
- Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Vesislava B Toteva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
| | | | - Andreai F Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | | | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| |
Collapse
|
11
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
12
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
13
|
Rengasamy M, Rajaram K. Waste sawdust-based composite as an interfacial evaporator for efficient solar steam generation. RSC Adv 2023; 13:5173-5184. [PMID: 36777939 PMCID: PMC9909372 DOI: 10.1039/d2ra07654c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Interfacial evaporation is the technology of localizing heat energy at the air-water interface and is used for getting potable water from salty or seawater effectively. In this work, we introduce a novel interfacial evaporator by blending different weight ratios of waste sawdust (1 g, 2 g, 3 g and 4 g) with bisphenol-A epoxy resin (LY556) and triethyltetramine hardener (HY951). The fabricated epoxy hardener sawdust (EHS) composite material was subjected to various characterizations for the possibility of using it in solar steam generation. Consequently, EHS displayed high light absorption, amorphous structure, functional groups, and large number of pores. The main objective of the study was to investigate interfacial solar steam generation with and without interfacial evaporators (EHS-1g, EHS-2g, EHS-3g, and EHS-4g) under indoor conditions. The maximum mass loss of water, evaporation rate and evaporation efficiency were found to be 4.5 g, 1.398 kg m-2 h-1, and 92.99%, respectively, for the EHS-4g evaporator. The salinity of the distilled condensed water was measured and was below the WHO standards. The results are due to (i) the large number of cross-linked porous structures used to permeate water at the evaporative surface by capillary action, (ii) low thermal conductivity of the composite that offers an efficient broad and strong light absorption, and (iii) existence of a larger hydraulic diameter and small tortuosity of pores, which reduces the salt ion penetration distance and dispatch back to bulk water.
Collapse
Affiliation(s)
- Marimuthu Rengasamy
- School of Mechanical Engineering, Vellore Institute of Technology Vellore - 632014 Tamil Nadu India
| | - Kamatchi Rajaram
- School of Mechanical Engineering, Vellore Institute of Technology Vellore - 632014 Tamil Nadu India
| |
Collapse
|
14
|
Tang SL, Hii SL, Koh CC. Process Optimisation of Ultrasound-Assisted Extraction of Oligosaccharides from Coconut Husk. ScientificWorldJournal 2023; 2023:9427831. [PMID: 37096240 PMCID: PMC10122602 DOI: 10.1155/2023/9427831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 04/26/2023] Open
Abstract
A fractional factorial design was used to investigate the ultrasound-assisted extraction (UAE) of oligosaccharides from coconut husk, an agroindustry by-product. The effects of five key influencing parameters (X 1, incubation temperature; X 2, extraction duration; X 3, ultrasonicator power; X 4, NaOH concentration; X 5, solid-to-liquid ratio) were studied. Total carbohydrate content (TC), total reducing sugar (TRS), and degree of polymerisation (DP) were the dependent variables. The optimal extraction condition was attained when oligosaccharides with a desired DP of 3.72 were extracted when the coconut husk in a liquid-to-solid ratio of 127 mL/g was treated with 1.05 percent (w/v) of NaOH solution at an incubation temperature of 30.4°C for 5 min using an ultrasonicator power of 248 W. The optimised parameters for oligosaccharide extraction from coconut husk reported in this study could be useful for the effective isolation of these compounds for prebiotic research.
Collapse
Affiliation(s)
- Shie-Lih Tang
- Centre for Research of Innovation and Sustainable Development, School of Engineering and Technology, University of Technology Sarawak, No. 1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Siew-Ling Hii
- Centre for Research of Innovation and Sustainable Development, School of Engineering and Technology, University of Technology Sarawak, No. 1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Chen-Chung Koh
- Centre for Research of Innovation and Sustainable Development, School of Engineering and Technology, University of Technology Sarawak, No. 1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| |
Collapse
|
15
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
16
|
Chen J, Cheng F, Luo D, Huang J, Ouyang J, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Peng Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans 2022; 51:14817-14832. [PMID: 36124915 DOI: 10.1039/d2dt02470e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, metal-organic frameworks (MOFs), basically inorganic-organic hybrid materials, have gained tremendous attention due to their vast applications. MOFs have shown enormous applications in almost every research field. However, the area of designing MOF materials for their biological applications is still an emerging field that needs attention. Titanium-based metal-organic framework (Ti-MOF) materials are used in many research areas due to their structural advantages, such as small particle size and large effective surface area. On the other hand, they have also shown unique advantages such as good biocompatibility, excellent catalytic oxidation and photocatalytic properties and ease of functionalization. This study reviews the recent research progress on Ti-MOFs in therapeutic areas such as antibacterial, oncology, anti-inflammation, and bone injury, which will provide new directions for further research in this biomedical field. Therefore, this article will help scientists working in the particular field to enhance their understanding of Ti-based MOFs for functional biomedical applications.
Collapse
Affiliation(s)
- Jinyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Fan Cheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Dongwen Luo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jiefeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
17
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
18
|
Peng H, Dong W, Chen Q, Song H, Sun H, Li R, Chang Y, Luo H. Encapsulation of Nitrilase in Zeolitic Imidazolate Framework-90 to Improve Its Stability and Reusability. Appl Biochem Biotechnol 2022; 194:3527-3540. [PMID: 35386065 DOI: 10.1007/s12010-022-03890-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023]
Abstract
In this study, nitrilase (Nit) was immobilized in zeolite imidazole framework-90 (ZIF-90) by one-pot biomimetic mineralization strategy. The structure, morphology and functional groups of ZIF-90 and immobilized enzyme Nit@ZIF-90 were characterized by scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). Circular dichroism (CD) proved that the immobilized method of encapsulation in ZIF-90 could effectively maintain the intrinsic conformation of Nit. Meanwhile, the stability and reusability of Nit@ZIF-90 were systematically evaluated. Compared with the free enzyme, the thermal, pH and organic solvents stability of Nit@ZIF-90 were significantly increased. Further, Nit@ZIF-90 exhibited better reusability during the hydrolysis of acrylonitrile and retained 48.34% of the initial activity after 10 cycles. Besides, the Ni@ZIF-90 had preferable storage stability, which showed a high degree of residual activity (more than 64 %) after storage at 4 °C for 7 d. The improved stability and reusability of the Nit@ZIF-90 implied that it could be used as a potential effective biocatalyst for hydrolysis of nitrile compounds in industrial application.
Collapse
Affiliation(s)
- Hui Peng
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wenge Dong
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haiyan Song
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ren Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
19
|
Zhang B, Shi J, Zhao Y, Wang H, Chu Z, Chen Y, Wu Z, Jiang Z. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Le NT, Hoang NT, Van VTT, Nguyen TPD, Chau NHT, Le NTN, Le HBT, Phung HT, Nguyen HT, Nguyen HM. Extraction of curcumin from turmeric residue ( Curcuma longa L.) using deep eutectic solvents and surfactant solvents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:850-858. [PMID: 35166283 DOI: 10.1039/d1ay02152d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using waste materials to extract biologically active ingredients with green solvents is a new trend for sustainable development. Herein, different types of deep eutectic solvents (DESs) and surfactant solvents (SSs) were used to extract curcumin from turmeric residues (TRs), among which choline chloride-propylene glycol (ChCl-Pro) showed the highest yield. The optimized extraction conditions included a ChCl : Pro ratio of 1 : 2, water content in the DESs of 20%, solid : liquid ratio of 1 : 40 maintained for 60 min at 50 °C, and a TR particle size of 0.18 mm. The extraction yield was 54.2 mg g-1, which was 1.31 times higher than when methanol was used as a solvent. Distilled water was used to recover curcumin from the DES extract with a recovery yield of 99.7%. Furthermore, the antioxidant and acetylcholinesterase (AChE) inhibitory activities of the recovered curcumin were evaluated, with IC50 values of 25.58 ± 0.51 and 19.12 ± 0.83 μg mL-1, respectively. This study highlights the promising potential of using green solvents to extract bioactive compounds from waste materials.
Collapse
Affiliation(s)
- Nhan Trong Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | | | | | - Trieu Phat Dac Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Ngoc Huyen Thi Chau
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Nguyen Thao Nguyen Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hien Bich Thi Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | | | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
21
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Lopez MKS, Kalaw SP, Dulay RMR, De Leon AM, Reyes RG. Optimization of mycelial growth of <i>Xylaria papulis</i> Lloyd (Xylariaceae) in indigenous liquid culture conditions, science city of Muñoz, Nueva Ecija, Philippines. STUDIES IN FUNGI 2022. [DOI: 10.48130/sif-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Cao Y, Ge J. Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63798-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Zhu H, Li Y, Ming Z, Liu W. Glucose oxidase-mediated tumor starvation therapy combined with photothermal therapy for colon cancer. Biomater Sci 2021; 9:5577-5587. [PMID: 34241605 DOI: 10.1039/d1bm00869b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Colon cancer is one of the most common cancers with high mortality, and can easily spread and metastasize, remaining an urgent disease to be solved. Nanomaterial-associated starvation or photothermal therapy has been considered to be a promising strategy in tumor therapy. However, the therapeutic effect of a single regimen for cancer treatment still needs to be improved due to their respective limitations. Herein, a biomimetic multifunctional nanoreactor is developed by encapsulating glucose oxidase and gold nanorods (AuNRs) in an erythrocyte membrane camouflaged metal-organic framework (MOF) nanoparticle (ZGAM), which was exploited for synergistic treatment of colon cancer by combining glucose oxidase-based starvation with AuNR-based photothermal therapy (PTT). This biomimetic nanoreactor could not only exhaust endogenous glucose to suppress the growth of the tumor by the released glucose oxidase (GOx), but also enhance the effect of photothermal therapy via inhibiting the expression of heat shock protein (HSP). In vitro and in vivo investigations indicate that this biomimetic nanoreactor shows excellent therapeutic effects on tumors, resulting from the synergistic treatment of starvation therapy and PTT. Therefore, the proposed strategy may open a window to develop an intelligent therapeutic system for better therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Yunchun Li
- Department of Laboratory Medicine, Jinshan Hospital, Fundan University, Shanghai 201508, China
| | - Zunzhen Ming
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Weiwei Liu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China. and Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai 200050, China and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
26
|
Yadav AN, Kaur T, Devi R, Kour D, Yadav N, Abdel-Azeem AM, Yadav A, Ahluwalia AS. Bioprospecting for Biomolecules from Industrially Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zuin VG, Segatto ML, Zanotti K. Towards a green and sustainable fruit waste valorisation model in Brazil: optimisation of homogenizer-assisted extraction of bioactive compounds from mango waste using a response surface methodology. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractFood waste valorisation is currently at the core of discussions and development of future economic models which, allied to the application of green and sustainable technologies, offers a viable alternative to shift industrial practices towards a circular bioeconomy. The feasibility and technological possibilities based on an integrated mango waste biorefinery concept, focusing on the extraction of bioactive compounds, are discussed in this paper. Additionally, a statistically robust methodology is presented as a green approach to optimise the variables of a sustainable, low time and energy consumption extraction technique (homogenizer-assisted extraction). Maximum concentrations of the bioactive compounds were obtained in similar values of parameters ethanol/water concentration (67.73 and 70.11 %), sample/solvent ratio (29.33 and 28.17 %) and time (4.47 and 5.00 min) for mangiferin (354.4 mg/kg DW) and hyperoside (258.7 mg/kg DW), respectively. These results demonstrated the efficiency of the proposed green and sustainable method to obtain bioactive compounds from a very common and significant tropical fruit waste in Brazil, based on an integrated mango biorefinery concept.
Collapse
Affiliation(s)
- Vânia G. Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
- Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK, Tel.: +55 16 33518206, e-mail:
| | - Mateus L. Segatto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| | - Karine Zanotti
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
28
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
29
|
Ozdal M, Gurkok S, Ozdal OG, Kurbanoglu EB. Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Chen M, Zhang X, Xing C, Zhang C, Zheng Y, Pan J, Xu J, Bai Y. Efficient Stereoselective Synthesis of Structurally Diverse γ‐ and δ‐Lactones Using an Engineered Carbonyl Reductase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Meng Chen
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Xiao‐Yan Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Chen‐Guang Xing
- Xiamen Oamic Biotech. Co. Ltd 36 Longmen Road Xiamen 361026 P.R. China
| | - Chao Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yu‐Cong Zheng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian‐He Xu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yun‐Peng Bai
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
31
|
Ben Hmad I, Gargouri A. Two Distinct Hydrolysis Mechanisms of the Neutral Endoglucanases EG1 and EG2 of Stachybotrys microspora. Catal Letters 2018. [DOI: 10.1007/s10562-018-2410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|