1
|
Xing L, Zhang M, Liu L, Hu X, Liu J, Zhou X, Chai Z, Yin H. Multiomics provides insights into the succession of microbiota and metabolite during plant leaf fermentation. ENVIRONMENTAL RESEARCH 2023; 221:115304. [PMID: 36649845 DOI: 10.1016/j.envres.2023.115304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The quality of fermented plant products is closely related to microbial metabolism. Here, the associations of bacterial communities, metabolites, and functional genes were explored using multi-omics techniques based on plant leaf fermentation systems. The results showed significant changes in the structure of the microbial community, with a significant decrease in Firmicutes and a significant increase in Proteobacteria. In addition, the concentration of metabolites with antibacterial, antioxidant and aroma properties increased significantly, enhancing the quality of the fermented plant leaves. Integrated macrogenomic and metabolomic analyses indicated that amino acid metabolism could be key metabolic pathway affecting fermentation quality. Actinobacteria, Proteobacteria, Firmicutes were actively involved in tyrosine metabolism (ko00350) and phenylalanine metabolism (ko00360), and are presumed to be the major groups responsible for synthesizing growth and flavor compounds. This study emphasized the important role of microorganisms in the changes of metabolites during the fermentation of plant leaves.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Lulu Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xi Hu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, 425000, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
2
|
Trushna T, Dhiman V, Aher SB, Raj D, Ahirwar R, Shubham S, Nandi SS, Tiwari RR. Environmental monitoring and health assessment in an industrial town in central India: A cross-sectional study protocol. PLoS One 2022; 17:e0264154. [PMID: 35709216 PMCID: PMC9202949 DOI: 10.1371/journal.pone.0264154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Textile industry has been widely implicated in environmental pollution. The health effects of residing near manufacturing industries are not well documented in India, especially in central India. Hence, a cross-sectional environmental monitoring and health assessment study was initiated as per directions of the local authorities. Methods Comprehensive exposure data about the concentrations of relevant pollutants in the ambient air and ground water samples in the study area will be collected over one year. Using stratified random sampling, 3003 apparently healthy adults will be selected from the study area. Sociodemographic and anthropometric information, relevant medical and family history, and investigations including spirometry, electrocardiogram, neurobehavioral tests, and laboratory investigations (complete blood count, lipid profile and random blood glucose) will be conducted. Finally Iodine azide test and heavy metal level detection in urine and blood samples respectively will be conducted in a subset of selected participants to assess individual pollution exposure. Ethics approval has been obtained from the Institutional Ethics Committee of the National Institute for Research in Environmental Health (No: NIREH/IEC-7-II/1027, dated 07/01/2021). Discussion This manuscript describes the protocol for a multi-disciplinary study that aims to conduct environmental monitoring and health assessment in residential areas near viscose rayon and associated chemical manufacturing industries. Although India is the second largest manufacturer of rayon, next only to China, and viscose rayon manufacturing has been documented to be a source of multiple toxic pollutants, there is a lack of comprehensive information about the health effects of residing near such manufacturing units in India. Therefore implementing this study protocol will aid in filling in this knowledge gap.
Collapse
Affiliation(s)
- Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- * E-mail: (SSN); (TT)
| | - Vikas Dhiman
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Satish Bhagwatrao Aher
- Department of Environmental Monitoring and Exposure Assessment (Air), ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Dharma Raj
- Department of Environmental Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Swasti Shubham
- Department of Environmental Pathology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Subroto Shambhu Nandi
- Department of Environmental Monitoring and Exposure Assessment (Air), ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- * E-mail: (SSN); (TT)
| | - Rajnarayan R. Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Ul Haq H, Huang W, Li Y, Zhang T, Ma S, Zhang Y, Song Y, Lin D, Tian B. Genetic and genomic characterization of multidrug resistant Bacillus subtilis M3 isolated from an activated sludge reactor treating wastewater. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-01006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Salazar-Huerta MA, Ruiz-Ordaz N, Galíndez-Mayer J, García-Mena J, Juárez-Ramírez C. Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor. Bioprocess Biosyst Eng 2019; 42:17-27. [PMID: 30238361 DOI: 10.1007/s00449-018-2009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
This study deals with the mathematical simulation and experimental validation of a gradient system for the gradual change of the imidacloprid loading rate to a tubular biofilm reactor (TBR). The strategy was used for fast studies of the kinetic and stoichiometric impact caused by the increase in the pesticide loading rate in a TBR, running in plug flow regime. Seemingly, this strategy has never been used for biokinetic and stoichiometric studies in biofilm reactors. For this purpose, a mathematical model describing the substrate transient behavior Sg(t) in a concentration gradient generator system using variable volume tanks is proposed. A second model, representing the temporary variation in the loading rate of imidacloprid to an aerated equalizer tank preceding the packed zone of the TBR, is also presented. Both models were experimentally confirmed. After the treatment of the experimental data, the kinetic and stoichiometric changes occurring in the TBR, caused by the gradual increase in the imidacloprid loading rate, were readily evaluated. Although the structure of the microbial community, at the phylum level, showed similar behavior along the tubular reactor, the stress produced by the gradual increase in imidacloprid concentration had functional consequences on the mixed microbial populations which were reflected on the stoichiometric and kinetic parameters. After increasing more than five times the imidacloprid loading rate to the TBR, the imidacloprid removal efficiency decayed about 40%, and the microbial-specific removal rate of the insecticide showed a decrease of about 30%.
Collapse
Affiliation(s)
| | - Nora Ruiz-Ordaz
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Juvencio Galíndez-Mayer
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cleotilde Juárez-Ramírez
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. BIORESOURCE TECHNOLOGY 2018; 269:557-566. [PMID: 30219494 DOI: 10.1016/j.biortech.2018.08.118] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Daolin Du
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|