1
|
Qazi MA, Phulpoto IA, Wang Q, Dai Z. Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. Crit Rev Biotechnol 2024; 44:1403-1421. [PMID: 38232958 DOI: 10.1080/07388551.2023.2290981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 01/19/2024]
Abstract
The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Irfan Ali Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Diao Z, Roelants SLKW, Luyten G, Goeman J, Vandenberghe I, Van Driessche G, De Maeseneire SL, Soetaert WK, Devreese B. Revision of the sophorolipid biosynthetic pathway in Starmerella bombicola based on new insights in the substrate profile of its lactone esterase. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:89. [PMID: 38937850 PMCID: PMC11210130 DOI: 10.1186/s13068-024-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Sophorolipids (SLs) are a class of natural, biodegradable surfactants that found their way as ingredients for environment friendly cleaning products, cosmetics and nanotechnological applications. Large-scale production relies on fermentations using the yeast Starmerella bombicola that naturally produces high titers of SLs from renewable resources. The resulting product is typically an extracellular mixture of acidic and lactonic congeners. Previously, we identified an esterase, termed Starmerella bombicola lactone esterase (SBLE), believed to act as an extracellular reverse lactonase to directly use acidic SLs as substrate. RESULTS We here show based on newly available pure substrates, HPLC and mass spectrometric analysis, that the actual substrates of SBLE are in fact bola SLs, revealing that SBLE actually catalyzes an intramolecular transesterification reaction. Bola SLs contain a second sophorose attached to the fatty acyl group that acts as a leaving group during lactonization. CONCLUSIONS The biosynthetic function by which the Starmerella bombicola 'lactone esterase' converts acidic SLs into lactonic SLs should be revised to a 'transesterase' where bola SL are the true intermediate. This insights paves the way for alternative engineering strategies to develop designer surfactants.
Collapse
Affiliation(s)
- Zhoujian Diao
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Sophie L K W Roelants
- Department of Biotechnology, Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizenkaai 1, 9042, Ghent, Belgium
- R&D Department, AmphiStar, Zwijnaarde, Belgium
| | - Goedele Luyten
- Department of Biotechnology, Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan Goeman
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic Chemistry, Ghent University, Krijgslaan 281 (S.4), 9000, Ghent, Belgium
| | - Isabel Vandenberghe
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Gonzalez Van Driessche
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Department of Biotechnology, Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- R&D Department, AmphiStar, Zwijnaarde, Belgium
| | - Wim K Soetaert
- Department of Biotechnology, Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizenkaai 1, 9042, Ghent, Belgium
- R&D Department, AmphiStar, Zwijnaarde, Belgium
| | - Bart Devreese
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Ingham B, Hollywood K, Wongsirichot P, Veitch A, Winterburn J. Uncovering the fragmentation and separation characteristics of sophorolipid biosurfactants with LC-MS-ESI. J Ind Microbiol Biotechnol 2024; 51:kuae035. [PMID: 39327028 PMCID: PMC11484030 DOI: 10.1093/jimb/kuae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
The application of liquid chromatography and mass spectrometry (MS) is a challenging area of research for structural identification of sophorolipids, owing to the large number of possible variations in structure and limited knowledge on the separation and fragmentation characteristics of the variants. The aims of this work was to provide a comprehensive analysis of the expected characteristics and fragmentation patterns of a wide range of sophorolipid biosurfactant congeners, providing a methodology and process alongside freely available data to inform and enable future research of commercial or novel sophorolipids. Samples of acidic and lactonic sophorolipid standards were tested using reverse-phase ultra-high performance liquid chromatography and identified using electrospray ionization MS. 37 sophorolipid variants were identified and compared for their elution order and fragmentation pattern under MS/MS. The retention time of sophorolipids was increased by the presence of lactonization, unsaturation, chain length, and acetylation as hydrophobic interactions with the C18 stationary phase increased. A key finding that acidic forms can elute later than lactonic variants was obtained when the fatty acid length and unsaturation and acetylation are altered, in contradiction to previous literature statements. Fragmentation pathways were determined for lactonic and acidic variants under negative [M-H]- and positive [M+NH4]+ ionization, and unique patterns/pathways were identified to help determine the structural components present. The first publicly available database of chromatograms and MS2 spectra has been made available to aid in the identification of sophorolipid components and provide a reliable dataset to accelerate future research into novel sophorolipids and shorten the time to innovation. ONE-SENTENCE SUMMARY This article describes the process and challenges in identifying different structures of eco-friendly biosurfactants, providing a novel database to compare results.
Collapse
Affiliation(s)
- Benjamin Ingham
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alistair Veitch
- Holiferm Ltd., Unit 15, Severnside Trading Estate, Textilose Road, Manchester M17 1WA, UK
| | - James Winterburn
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Xia Y, Li Y, Shen W, Yang H, Chen X. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. Int J Mol Sci 2023; 24:15310. [PMID: 37894990 PMCID: PMC10607330 DOI: 10.3390/ijms242015310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Gord Noshahri N, Sharifi A, Seyedabadi M, Rudat J, Zare Mehrjerdi M. Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO 2 production monitoring. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02892-3. [PMID: 37338580 DOI: 10.1007/s00449-023-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Bioethanol's importance as a renewable energy carrier led to the development of new devices for the high-throughput screening (HTS) of ethanol-producing microorganisms, monitoring ethanol production, and process optimization. This study developed two devices based on measuring CO2 evolution (an equimolar byproduct of microbial ethanol fermentation) to allow for a fast and robust HTS of ethanol-producing microorganisms for industrial purposes. First, a pH-based system for identifying ethanol producers (Ethanol-HTS) was established in a 96-well plate format where CO2 emission is captured by a 3D-printed silicone lid and transferred from the fermentation well to a reagent containing bromothymol blue as a pH indicator. Second, a self-made CO2 flow meter (CFM) was developed as a lab-scale tool for real-time quantification of ethanol production. This CFM contains four chambers to simultaneously apply different fermentation treatments while LCD and serial ports allow fast and easy data transfer. Applying ethanol-HTS with various yeast concentrations and yeast strains displayed different colors, from dark blue to dark and light green, based on the amount of carbonic acid formed. The results of the CFM device revealed a fermentation profile. The curve of CO2 production flow among six replications showed the same pattern in all batches. The comparison of final ethanol concentrations calculated based on CO2 flow by the CFM device with the GC analysis showed 3% difference which is not significant. Data validation of both devices demonstrated their applicability for screening novel bioethanol-producer strains, determining carbohydrate fermentation profiles, and monitoring ethanol production in real time.
Collapse
Affiliation(s)
- Najme Gord Noshahri
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Ahmad Sharifi
- Horticultural Plants Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Mohsen Seyedabadi
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Jens Rudat
- BLT 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | | |
Collapse
|
6
|
Qazi MA, Wang Q, Dai Z. Sophorolipids bioproduction in the yeast Starmerella bombicola: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2022; 346:126593. [PMID: 34942344 DOI: 10.1016/j.biortech.2021.126593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Sophorolipids are highly active green surfactants (glycolipid biosurfactants) getting tremendous appreciation worldwide due to their low toxicity, biodegradability, broad spectrum of applications, and significant biotechnological potential. Sophorolipids are mainly produced by an oleaginous budding yeast Starmerella bombicola using low-cost substrates. Therefore, the recent state-of-art literature information about S. bombicola yeast is hereby provided, especially the underlying production pathways, biosynthetic gene cluster, and regulatory enzymes. Moreover, the S. bombicola offers flexibility for regulating the structural diversity of sophorolipids, either genetically or by varying fermentative conditions. The emergence of advanced technologies like 'Omics and CRISPR/Cas have certainly boosted rational engineering research for designing high-performing platform strains. Therefore, currently available genetic engineering tools in S. bombicola were reviewed, thereby opening up exciting new possibilities for improving the overall bioproduction titers, structural variability, and stability of sophorolipids. Finally, some technical perspectives to address the current challenges were discussed.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China.
| |
Collapse
|
7
|
Ingham B, Winterburn J. Developing an understanding of sophorolipid synthesis through application of a central composite design model. Microb Biotechnol 2022; 15:1744-1761. [PMID: 35038384 PMCID: PMC9151336 DOI: 10.1111/1751-7915.14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
A key barrier to market penetration for sophorolipid biosurfactants is the ability to improve productivity and utilize alternative feedstocks to reduce the cost of production. To do this, a suitable screening tool is required that is able to model the interactions between media components and alter conditions to maximize productivity. In the following work, a central composite design is applied to analyse the effects of altering glucose, rapeseed oil, corn steep liquor and ammonium sulphate concentrations on sophorolipid production with Starmerella bombicola ATCC 222144 after 168 h. Sophorolipid production was analysed using standard least squares regression and the findings related to the growth (OD600 ) and broth conditions (glucose, glycerol and oil concentration). An optimum media composition was found that was capable of producing 39.5 g l-1 sophorolipid. Nitrogen and rapeseed oil sources were found to be significant, linked to their role in growth and substrate supply respectively. Glucose did not demonstrate a significant effect on production despite its importance to biosynthesis and its depletion in the broth within 96 h, instead being replaced by glycerol (via triglyceride breakdown) as the hydrophilic carbon source at the point of glucose depletion. A large dataset was obtained, and a regression model with applications towards substrate screening and process optimisation developed.
Collapse
Affiliation(s)
- Benjamin Ingham
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
8
|
Process Development in Biosurfactant Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:195-233. [DOI: 10.1007/10_2021_195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Peng ZQ, Li C, Lin Y, Wu SS, Gan LH, Liu J, Yang SL, Zeng XH, Lin L. Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:219. [PMID: 34809676 PMCID: PMC8607671 DOI: 10.1186/s13068-021-02072-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cellulase plays a key role in converting cellulosic biomass into fermentable sugar to produce chemicals and fuels, which is generally produced by filamentous fungi. However, most of the filamentous fungi obtained by natural breeding have low secretory capacity in cellulase production, which are far from meeting the requirements of industrial production. Random mutagenesis combined with adaptive laboratory evolution (ALE) strategy is an effective method to increase the production of fungal enzymes. RESULTS This study obtained a mutant of Trichoderma afroharzianum by exposures to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), Ethyl Methanesulfonate (EMS), Atmospheric and Room Temperature Plasma (ARTP) and ALE with high sugar stress. The T. afroharzianum mutant MEA-12 produced 0.60, 5.47, 0.31 and 2.17 IU/mL FPase, CMCase, pNPCase and pNPGase, respectively. These levels were 4.33, 6.37, 4.92 and 4.15 times higher than those of the parental strain, respectively. Also, it was found that T. afroharzianum had the same carbon catabolite repression (CCR) effect as other Trichoderma in liquid submerged fermentation. In contrast, the mutant MEA-12 can tolerate the inhibition of glucose (up to 20 mM) without affecting enzyme production under inducing conditions. Interestingly, crude enzyme from MEA-12 showed high enzymatic hydrolysis efficiency against three different biomasses (cornstalk, bamboo and reed), when combined with cellulase from T. reesei Rut-C30. In addition, the factors that improved cellulase production by MEA-12 were clarified. CONCLUSIONS Overall, compound mutagenesis combined with ALE effectively increased the production of fungal cellulase. A super-producing mutant MEA-12 was obtained, and its cellulase could hydrolyze common biomasses efficiently, in combination with enzymes derived from model strain T. reesei, which provides a new choice for processing of bioresources in the future.
Collapse
Affiliation(s)
- Zhi-Qing Peng
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Chuang Li
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Yi Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Sheng-Shan Wu
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Li-Hui Gan
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Jian Liu
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Shu-Liang Yang
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| | - Xian-Hai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, China.
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China.
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China.
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen, 361102, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Xiamen, 361102, China
| |
Collapse
|
10
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
11
|
Chen Y, Tian X, Li Q, Li Y, Chu J, Hang H, Zhuang Y. Target-site directed rational high-throughput screening system for high sophorolipids production by Candida bombicola. BIORESOURCE TECHNOLOGY 2020; 315:123856. [PMID: 32707507 DOI: 10.1016/j.biortech.2020.123856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this study we have established a rational and high performance high-throughput screening system to select for a sophorolipids (SLs) high-producing strain of Candida bombicola. Introduction of mutagen combination, relaxation culture and multi-stress significantly improved both mutation and positive mutation rates. A high-performing strain, Ncbio 5, was selected out of 6212 mutants. Final SLs titer, productivity and yield of this strain in 5 L bioreactors were 26.9%, 27.0% and 35.0% higher than in the original strain, respectively. The improved fermentation performance in Ncbio 5 is contributed by the longer production period, higher SLs productivity and more efficient oil utilization. The strategy adopted herein to optimize the high-throughput screening system should be readily extendable to other similar systems.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qianhui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Li Y, Chen Y, Tian X, Chu J. Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology. Appl Microbiol Biotechnol 2020; 104:10325-10337. [PMID: 33097965 DOI: 10.1007/s00253-020-10964-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
Sophorolipids (SLs), currently one of the most promising biosurfactants, are secondary metabolites produced by many non-pathogenic yeasts, among which Candida bombicola ATCC 22214 is the main sophorolipid-producing strain. SLs have gained much attention since they exhibit anti-tumor, anti-bacterial, anti-inflammatory, and other beneficial biological activities. In addition, as biosurfactants, SLs have a low toxicity level and are easily degradable without polluting the environment. However, the production cost of SLs remains high, which hinders the industrialization process of SL production. This paper describes SL structure and the metabolic pathway of SL synthesis firstly. Furthermore, we analyze factors that contribute to the higher production cost of SLs and summarize current research status on the advancement of SL production based on two aspects: (1) the improvement of strain performance and (2) the optimization of fermentation process. Further prospects of lowering the cost of SL production are also discussed in order to achieve larger-scale SL production with a high yield at a low cost. KEY POINTS: • Review of advances in strain performance improvement and fermentation optimization. • High-throughput screening and metabolic engineering for high-performance strains. • Low-cost substrates and semi-continuous strategies for efficient SL production.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
13
|
Ma XJ, Zhang HM, Lu XF, Han J, Zhu HX, Wang H, Yao RS. Mutant breeding of Starmerella bombicola by atmospheric and room-temperature plasma (ARTP) for improved production of specific or total sophorolipids. Bioprocess Biosyst Eng 2020; 43:1869-1883. [PMID: 32447514 DOI: 10.1007/s00449-020-02377-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
To enhance specific or total sophorolipids (SLs) production by Starmerella bombicola for specific application, mutant library consisting of 106 mutants from 7 batches was constructed via atmospheric and room-temperature plasma (ARTP). When compared to the wild strain, 11, 36 and 12 mutants performed increases over 30% in lactonic, acidic or total SLs production. Genetic stability investigation showed that 8, 7, and 4 mutants could maintain the improved SLs production capacity. Mutants of A6-9 and A2-8 were selected out for enhanced specific SLs and total SLs production in fed-batch cultivation in flask. Without optimization, A6-9 obtained the highest reported lactonic SLs production of 51.95 g/l and A2-8 performed comparable acidic and total SLs production of 68.75 g/l and 100.33 g/l with all the reported stains. The structural composition of the obtained SLs was analyzed by HPLC and LC/MS, and the results confirmed the enhancement of SLs and certain SL components. These mutants would be important in industrial applications because the production and purification costs of SLs could be greatly reduced. Besides, the acquisition of these mutants also provided materials for the investigation of regulation mechanism of SLs biosynthesis for further genetic engineering of S. bombicola. Furthermore, critical micelle concentration (CMC), minimum surface tension (STmin) and hydrophilic-lipophilic balance (HLB) of the SLs obtained from the wild and mutant strains were also examined and compared. These results demonstrated the feasibility of obtaining SLs with different properties from different strains and the high efficiency of mutation breeding of S. bombicola by ARTP.
Collapse
Affiliation(s)
- Xiao-Jing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.
| | - Hui-Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xu-Feng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jian Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui-Xia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei, 230009, China
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei, 230009, China.
| |
Collapse
|
14
|
Zeng W, Guo L, Xu S, Chen J, Zhou J. High-Throughput Screening Technology in Industrial Biotechnology. Trends Biotechnol 2020; 38:888-906. [PMID: 32005372 DOI: 10.1016/j.tibtech.2020.01.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Based on the development of automatic devices and rapid assay methods, various high-throughput screening (HTS) strategies have been established for improving the performance of industrial microorganisms. We discuss the most significant factors that can improve HTS efficiency, including the construction of screening libraries with high diversity and the use of new detection methods to expand the search range and highlight target compounds. We also summarize applications of HTS for enhancing the performance of industrial microorganisms. Current challenges and potential improvements to HTS in industrial biotechnology are discussed in the context of rapid developments in synthetic biology, nanotechnology, and artificial intelligence. Rational integration will be an important driving force for constructing more efficient industrial microorganisms with wider applications in biotechnology.
Collapse
Affiliation(s)
- Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Likun Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|