1
|
Yarmohammadi H, Ridouani F, Zhao K, Sotirchos VS, Son SY, Geevarghese R, Marinelli B, Ghosn M, Erinjeri JP, Boas FE, Solomon SB. Adjusted Tumor Enhancement on Dual-Phase Cone-Beam CT: Predictor of Response and Overall Survival in Patients with Liver Malignancies Treated with Hepatic Artery Embolization. Curr Oncol 2024; 31:3030-3039. [PMID: 38920715 PMCID: PMC11202518 DOI: 10.3390/curroncol31060231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to examine the value of tumor enhancement parameters on dual-phase cone-beam CT (CBCT) in predicting initial response, local progression-free survival (L-PFS) and overall survival (OS) following hepatic artery embolization (HAE). Between Feb 2016 and Feb 2023, 13 patients with 29 hepatic tumors treated with HAE were analyzed. Pre- and post-embolization, subtracted CBCTs were performed, and tumor enhancement parameters were measured, resulting in three parameters: pre-embolization Adjusted Tumor Enhancement (pre-ATE), post-embolization ATE and the difference between pre- and post-ATE (∆ATE). Treatment response was evaluated using the mRECIST criteria at 1 month. Tumors were grouped into complete response (CR) and non-complete response (non-CR) groups. To account for the effect of multiple lesions per patient, a cluster data analytic method was employed. The Kaplan-Meier method was utilized for survival analysis using the lesion with the lowest ∆ATE value in each patient. Seventeen (59%) tumors showed CR and twelve (41%) showed non-CR. Pre-ATE was 38.5 ± 10.6% in the CR group and 30.4 ± 11.0% in the non-CR group (p = 0.023). ∆ATE in the CR group was 39 ± 12 percentage points following embolization, compared with 29 ± 11 in the non-CR group (p = 0.009). Patients with ∆ATE > 33 had a median L-PFS of 13.1 months compared to 5.7 in patients with ∆ATE ≤ 33 (95% CI = 0.038-0.21) (HR, 95% CI = 0.45, 0.20-0.9, p = 0.04). Patients with ∆ATE ≤ 33 had a median OS of 19.7 months (95% CI = 3.77-19.8), while in the ∆ATE > 33 group, median OS was not reached (95% CI = 20.3-NA) (HR, 95% CI = 0.15, 0.018-1.38, p = 0.04). CBCT-derived ATE parameters can predict treatment response, L-PFS and OS following HAE.
Collapse
Affiliation(s)
- Hooman Yarmohammadi
- Department of Radiology, Division of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; (F.R.); (K.Z.); (V.S.S.); (S.Y.S.); (R.G.); (B.M.); (M.G.); (J.P.E.); (F.E.B.); (S.B.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Anand S, Geschwind JF, Etezadi V, Nezami N. Lipiodol: from intrusion until exile from the tumor microenvironment. Oncoscience 2023; 10:34-35. [PMID: 37601621 PMCID: PMC10434996 DOI: 10.18632/oncoscience.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
| | | | | | - Nariman Nezami
- Correspondence to:Nariman Nezami, Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; The Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA email:
| |
Collapse
|
3
|
Adam LC, Savic LJ, Chapiro J, Letzen B, Lin M, Georgiades C, Hong KK, Nezami N. Response assessment methods for patients with hepatic metastasis from rare tumor primaries undergoing transarterial chemoembolization. Clin Imaging 2022; 89:112-119. [PMID: 35777239 PMCID: PMC9470015 DOI: 10.1016/j.clinimag.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study assessed the response to conventional transarterial chemoembolization (cTACE) in patients with liver metastases from rare tumor primaries using one-dimensional (1D) and three-dimensional (3D) quantitative response assessment methods, and investigate the relationship of lipiodol deposition in predicting response. MATERIALS AND METHODS This retrospective bicentric study included 16 patients with hepatic metastases from rare tumors treated with cTACE between 2002 and 2017. Multi-phasic MR imaging obtained before and after cTACE was used for assessment of response. Response evaluation criteria in solid tumors (RECIST) and modified-RECIST (mRECIST) were utilized for 1D response assessment, and volumetric RECIST (vRECIST) and enhancement-based quantitative European Association for Study of the Liver EASL (qEASL) were used for 3D response assessment. The same day post-cTACE CT scan was analyzed to quantify intratumoral lipiodol deposition (%). RESULTS The mean and standard deviation (SD) of diameter of treated lesions per targeted area was 7.5 ± 5.4 cm, and the mean and SD of number of metastases in each targeted area was 4.2 ± 4.6. cTACE was technically successful in all patients, without major complications. While RECIST and vRECIST methods did not allocate patients with partial response, mRECIST and qEASL identified patients with partial response. Intratumoral lipiodol deposition significantly predicted treatment response according qEASL (R2 = 0.470, p < 0.01), while no association was shown between lipiodol deposition within treated tumor area and RECIST or mRECIST (p > 0.212). CONCLUSION 3D quantitative volumetric response analysis can be used for stratification of response to cTACE in patients with hepatic metastases originating from rare primary tumors. Lipiodol deposition could potentially be used as an early surrogate to predict response to cTACE.
Collapse
Affiliation(s)
- Lucas C Adam
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Letzen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Visage Imaging, Inc., San Diego, CA, USA
| | - Christos Georgiades
- Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelvin K Hong
- Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nariman Nezami
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
4
|
Alizadeh LS, Koch V, Vogl TJ, Yel I, Gruenewald L, Albrecht MH, Herrmann E, von Knebel-Doeberitz PL, Booz C. Value of Latest-generation Cone-beam Computed Tomography for Post Lipiodol-embolization Imaging in Hepatic Transarterial Chemoembolization in Comparison with Multi-detector Computed Tomography. Acad Radiol 2022; 29:e109-e118. [PMID: 34598867 DOI: 10.1016/j.acra.2021.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate image quality, radiation dose (phantom study) and tumor volumetry of intraprocedural cone-beam computed tomography (CBCT) compared to postprocedural multidetector computed tomography (MDCT) in patients undergoing hepatic conventional transarterial chemoembolization (cTACE). MATERIALS AND METHODS One hundred fourteen patients (64/50 female/male; mean age, 57 ± 14 years) who had undergone cTACE including intraprocedural-CBCT and postprocedural-MDCT were retrospectively enrolled. Subjective image quality (IQ) and suitability for assessing Lipiodol distribution were compared using 4-point Likert scales; additionally, lesion to liver contrast (LLC) and contrast-to-noise-ratio (CNR) were compared. Tumor volumes were measured semi-automatically and compared to magnetic resonance imaging (MRI). Effective doses were measured using an anthropomorphic phantom. RESULTS The suitability of CBCT for assessing Lipiodol distribution during cTACE was comparable to MDCT (mean score, 3.2 ± 0.6) and CBCT (3.4 ± 1.0, p = 0.29). Subjective overall IQ was rated with a mean score of 3.2 ± 0.7 (κ = 0.66) in CBCT and 3.1 ± 0.4 (κ = 0.57, p = 0.15) in MDCT. Evaluation of LLC showed significant differences between CBCT and MDCT (mean scores 3.6 ± 1.2 and 2.6 ± 1.5, respectively). CNR analysis demonstrated comparable mean values for CBCT and MDCT (3.5 ± 1.3 vs. 3.4 ± 1.8, p = 0.31). No significant differences were found regarding tumor volumetry (mean volumes: CBCT, 27.0 ± 17.4 mm3; MDCT: 26.8 ± 16.0 mm3; p = 0.66) in comparison to T2-weighted MRI (25.9 ± 17.6 mm3). Effective doses were 3.2 ± 0.6 mSv (CBCT) and 2.5 ± 0.3 mSv (MDCT) (p < 0.001). No cTACE-related complications (bleeding, non-target embolization) were missed on intraprocedural CBCT in comparison to postprocedural MDCT. CONCLUSION Latest-generation intraprocedural CBCT provides suitable assessment of Lipiodol distribution and similar image quality compared to MDCT while allowing for robust volumetric tumor measurements and immediate complication control by visualizing non-target embolization and hematoma. Therefore, it may improve patient safety and outcome as well as clinical workflow compared to postprocedural MDCT in hepatic cTACE in certain cases.
Collapse
Affiliation(s)
- Leona S Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Leon Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany; Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| |
Collapse
|
5
|
Malpani R, Petty CW, Yang J, Bhatt N, Zeevi T, Chockalingam V, Raju R, Petukhova-Greenstein A, Santana JG, Schlachter TR, Madoff DC, Chapiro J, Duncan J, Lin M. Quantitative Automated Segmentation of Lipiodol Deposits on Cone Beam CT Imaging acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach. J Vasc Interv Radiol 2021; 33:324-332.e2. [PMID: 34923098 DOI: 10.1016/j.jvir.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The purpose of this study was to show that a deep learning-based, automated model for Lipiodol segmentation on CBCT after cTACE performs closer to the "ground truth segmentation" than a conventional thresholding-based model. MATERIALS & METHODS This post-hoc analysis included 36 patients with a diagnosis of HCC or other solid liver tumor who underwent cTACE with an intra-procedural CBCT. Semi-automatic segmentation of Lipiodol were obtained. Then, a convolutional U-net model was used to output a binary mask that predicts Lipiodol deposition. A threshold value of signal intensity on CBCT was used to obtain a Lipiodol mask for comparison. Dice similarity coefficient (DSC), Mean-squared error (MSE), and Center of Mass (CM), and fractional volume ratios for both masks were obtained by comparing them to the ground truth (radiologist segmented Lipiodol deposits) to obtain accuracy metrics for the two masks. These results were used to compare the model vs. the threshold technique. RESULTS For all metrics, the U-net outperformed the threshold technique: DSC (0.65±0.17 vs. 0.45±0.22,p<0.001) and MSE (125.53±107.36 vs. 185.98±93.82,p=0.005). Difference between the CM predicted, and the actual CM was (15.31±14.63mm vs. 31.34±30.24mm,p<0.001), with lesser distance indicating higher accuracy. The fraction of volume present ([predicted Lipiodol volume]/[ground truth Lipiodol volume]) was 1.22±0.84vs.2.58±3.52,p=0.048 for our model's prediction and threshold technique, respectively. CONCLUSION This study showed that a deep learning framework could detect Lipiodol in CBCT imaging and was capable of outperforming the conventionally used thresholding technique over several metrics. Further optimization will allow for more accurate, quantitative predictions of Lipiodol depositions intra-procedurally.
Collapse
Affiliation(s)
- Rohil Malpani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Christopher W Petty
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Junlin Yang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Neha Bhatt
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Vijay Chockalingam
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Rajiv Raju
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Alexandra Petukhova-Greenstein
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Jessica Gois Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Todd R Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA.
| | - James Duncan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT. 06520, USA; Visage Imaging, Inc., 12625 High Bluff Drive, Suite 205, San Diego, CA 92130, USA
| |
Collapse
|
6
|
Nezami N, VAN Breugel JMM, Konstantinidis M, Chapiro J, Savic LJ, Miszczuk MA, Rexha I, Lin M, Hong K, Georgiades C. Lipiodol Deposition and Washout in Primary and Metastatic Liver Tumors After Chemoembolization. In Vivo 2021; 35:3261-3270. [PMID: 34697157 DOI: 10.21873/invivo.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIM Lipiodol is the key component of conventional trans-arterial chemoembolization. Our aim was to evaluate lipiodol deposition and washout rate after conventional trans-arterial chemoembolization in intrahepatic cholangiocarcinoma and hepatic metastases originating from neuroendocrine tumors and colorectal carcinoma. PATIENTS AND METHODS This was a retrospective analysis of 44 patients with intrahepatic cholangiocarcinoma and liver metastasis from neuroendocrine tumors or colorectal carcinoma who underwent conventional trans-arterial chemoembolization. Lipiodol volume (cm3) was analyzed on non-contrast computed tomography imaging obtained within 24 h post conventional trans-arterial chemoembolization, and 40-220 days after conventional trans-arterial chemoembolization using volumetric image analysis software. Tumor response was assessed on contrast-enhanced magnetic resonance imaging 1 month after conventional trans-arterial chemoembolization. RESULTS The washout rate was longer for neuroendocrine tumors compared to colorectal carcinoma, with half-lives of 54.61 days (p<0.00001) and 19.39 days (p<0.001), respectively, with no exponential washout among intrahepatic cholangiocarcinomas (p=0.83). The half-life for lipiodol washout was longer in tumors larger than 300 cm3 compared to smaller tumors (25.43 vs. 22.71 days). Lipiodol wash out half-life was 54.76 days (p<0.01) and 29.45 days (p<0.00001) for tumors with a contrast enhancement burden of 60% or more and less than 60%, respectively. A negative exponential relationship for lipiodol washout was observed in non-responders (p<0.00001). CONCLUSION Lipiodol washout is a time-dependent process, and occurs faster in colorectal carcinoma tumors, tumors smaller than 300 cm3, tumors with baseline contrast enhancement burden of less than 60%, and non-responding target lesions.
Collapse
Affiliation(s)
- Nariman Nezami
- Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A.; .,Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | - Johanna Maria Mijntje VAN Breugel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A.,Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Medical faculty, Utrecht University, Utrecht, the Netherlands
| | - Menelaos Konstantinidis
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Julius Chapiro
- Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A
| | - Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Milena Anna Miszczuk
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A
| | - Irvin Rexha
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, U.S.A.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mingde Lin
- Visage Imaging, Inc., San Diego, CA, U.S.A
| | - Kelvin Hong
- Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Christos Georgiades
- Division of Vascular and Interventional Radiology, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
7
|
Letzen BS, Malpani R, Miszczuk M, de Ruiter QMB, Petty CW, Rexha I, Nezami N, Laage-Gaupp F, Lin M, Schlachter TR, Chapiro J. Lipiodol as an intra-procedural imaging biomarker for liver tumor response to transarterial chemoembolization: Post-hoc analysis of a prospective clinical trial. Clin Imaging 2021; 78:194-200. [PMID: 34022765 DOI: 10.1016/j.clinimag.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of the ethiodized oil- Lipiodol in conventional trans-arterial chemoembolization (cTACE) ensures radiopacity to visualize drug delivery in the process of providing selective drug targeting to hepatic cancers and arterial embolization. Lipiodol functions as a carrier of chemo drugs for targeted therapy, as an embolic agent, augmenting the drug effect by efflux into the portal veins as well as a predictor for the tumor response and survival. PURPOSE To prospectively evaluate the role of 3D quantitative assessment of intra-procedural Lipiodol deposition in liver tumors on CBCT immediately after cTACE as a predictive biomarker for the outcome of cTACE. MATERIALS & METHODS This was a post-hoc analysis of data from an IRB-approved prospective clinical trial. Thirty-two patients with hepatocellular carcinoma or liver metastases underwent contrast enhanced CBCT obtained immediately after cTACE, unenhanced MDCT at 24 h after cTACE, and follow-up imaging 30-, 90- and 180-days post-procedure. Lipiodol deposition was quantified on CBCT after cTACE and was characterized by 4 ordinal levels: ≤25%, >25-50%, >50-75%, >75%. Tumor response was assessed on follow-up MRI. Lipiodol deposition on imaging, correlation between Lipiodol deposition and tumor response criteria, and correlation between Lipiodol coverage and median overall survival (MOS) were evaluated. RESULTS Image analysis demonstrated a high degree of agreement between the Lipiodol deposition on CBCT and the 24 h post-TACE CT, with a Bland-Altman plot of Lipiodol deposition on imaging demonstrated a bias of 2.75, with 95%-limits-of-agreement: -16.6 to 22.1%. An inverse relationship between Lipiodol deposition in responders versus non-responders for two-dimensional EASL reached statistical significance at 30 days (p = 0.02) and 90 days (p = 0.05). Comparing the Lipiodol deposition in Modified Response Evaluation Criteria in Solid Tumors (mRECIST) responders versus non-responders showed a statistically significant higher volumetric deposition in responders for European Association for the Study of the Liver (EASL)-30d, EASL-90d, and quantitative EASL-180d. The correlation between the relative Lipiodol deposition and the change in enhancing tumor volume showed a negative association post-cTACE (30-day: p < 0.001; rho = -0.63). A Kaplan-Meier analysis for patients with high vs. low Lipiodol deposition showed a MOS of 46 vs. 33 months (p = 0.05). CONCLUSION 3D quantification of Lipiodol deposition on intra-procedural CBCT is a predictive biomarker of outcome in patients with primary or metastatic liver cancer undergoing cTACE. There are spatial and volumetric agreements between 3D quantification of Lipiodol deposition on intra-procedural CBCT and 24 h post-cTACE MDCT. The spatial and volumetric agreement between Lipiodol deposition on intra-procedural CBCT and 24 h post-cTACE MDCT could suggest that acquiring MDCT 24 h after cTACE is redundant. Importantly, the demonstrated relationship between levels of tumor coverage with Lipiodol and degree and timeline of tumor response after cTACE underline the role of Lipiodol as an intra-procedural surrogate for tumor response, with potential implications for the prediction of survival.
Collapse
Affiliation(s)
- Brian S Letzen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Rohil Malpani
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Milena Miszczuk
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA; Department of Radiology, Charité University School of Medicine, Charitépl. 1, 10117 Berlin, Germany
| | - Quirina M B de Ruiter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA; Philips Healthcare, Image Guided Therapy, Amstelplein 2, Amsterdam 1096 BC, Netherlands
| | - Christopher W Petty
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Irvin Rexha
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA; Department of Radiology, Charité University School of Medicine, Charitépl. 1, 10117 Berlin, Germany
| | - Nariman Nezami
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA; Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Fabian Laage-Gaupp
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA; Visage Imaging Inc., 12625 High Bluff Drive, Suite 205, San Diego, CA 92130, USA
| | - Todd R Schlachter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Tsai YC, Shih JH, Hwang HE, Chiu NC, Lee RC, Tseng HS, Liu CA. Early prediction of 1-year tumor response of hepatocellular carcinoma with lipiodol deposition pattern through post-embolization cone-beam computed tomography during conventional transarterial chemoembolization. Eur Radiol 2021; 31:7464-7475. [PMID: 33765160 DOI: 10.1007/s00330-021-07843-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate whether parenchyma-to-lipiodol ratio (PLR) and lesion-to-lipiodol ratio (LLR) on C-arm cone-beam computed tomography (CBCT) can predict 1-year tumor response in patients with hepatocellular carcinoma (HCC) treated with conventional transcatheter arterial chemoembolization (cTACE). METHODS This retrospective analysis included 221 HCC target lesions within up-to-seven criteria in 80 patients who underwent cTACE with arterial-phase CBCT and unenhanced CBCT after cTACE from 2015 to 2018. PLR and LLR of every tumor slice were obtained through mean density division of liver parenchyma and tumor enhancement with intratumoral lipiodol deposition. The cutoff values (COVs) of maximal PLR and LLR of every tumor were analyzed using Youden's index. The reliability of COV, correlations between the related parameters, and 1-year progression were assessed through interobserver agreement and multivariate analysis. COV validity was verified using the chi-square test and Cramer's V coefficient (V) in the validation cohort. RESULTS Standard COVs of PLR and LLR were 0.149 and 1.4872, respectively. Interobserver agreement of COV for PLR and LLR was near perfect (kappa > 0.9). Multivariate analysis suggested that COV of PLR is an independent predictor (odds ratio = 1.23532×1014, p = 4.37×10-7). COV of PLR showed strong consistency, correlation with 1-year progression in prediction model (V = 0.829-0.776; p < 0.0001), and presented as an effective predictor in the validation cohort (V = 0.766; p < 0.0001). CONCLUSION The COV of PLR (0.149) assessed through immediate post-embolization CBCT is an objective, effective, and approachable predictor of 1-year HCC progression after cTACE. KEY POINTS • The maximal PLR value indicates the least lipiodol-distributed region in an HCC tumor. The maximal LLR value indicates the least lipiodol-deposited region in the tumor due to incomplete lipiodol delivery. PLR and LLR are concepts like signal-to-noise ratio to characterize the lipiodol retention pattern objectively to predict 1-year tumor progression immediately without any quantification software for 3D image analysis immediately after cTACE treatment. • COV of PLR can facilitate the early prediction of tumor progression/recurrence and indicate the section of embolized HCC, providing the operator's good targets for sequential cTACE or combined ablation. • The validation cohort in our study verified standard COVs of PLR and LLR. The validation process was more convincing and delicate than that of previous retrospective studies.
Collapse
Affiliation(s)
- Yin-Chen Tsai
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hsuen-En Hwang
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Nai-Chi Chiu
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Rheun-Chuan Lee
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hsiou-Shan Tseng
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.,Department of Medical Imaging, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Beitou District, Taipei, Taiwan
| | - Chien-An Liu
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
9
|
Soliman MM, Sarkar D, Glezerman I, Maybody M. Findings on intraprocedural non-contrast computed tomographic imaging following hepatic artery embolization are associated with development of contrast-induced nephropathy. World J Nephrol 2020; 9:33-42. [PMID: 33312900 PMCID: PMC7701934 DOI: 10.5527/wjn.v9.i2.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Contrast-induced nephropathy (CIN) is a reversible form of acute kidney injury that occurs within 48-72 h of exposure to intravascular contrast material. CIN is the third leading cause of hospital-acquired acute kidney injury and accounts for 12% of such cases. Risk factors for CIN development can be divided into patient- and procedure-related. The former includes pre-existing chronic renal insufficiency and diabetes mellitus. The latter includes high contrast volume and repeated exposure over 72 h. The incidence of CIN is relatively low (up to 5%) in patients with intact renal function. However, in patients with known chronic renal insufficiency, the incidence can reach up to 27%.
AIM To examine the association between renal enhancement pattern on non-contrast enhanced computed tomographic (CT) images obtained immediately following hepatic artery embolization with development of CIN.
METHODS Retrospective review of all patients who underwent hepatic artery embolization between 01/2010 and 01/2011 (n = 162) was performed. Patients without intraprocedural CT imaging (n = 51), combined embolization/ablation (n = 6) and those with chronic kidney disease (n = 21) were excluded. The study group comprised of 84 patients with 106 procedures. CIN was defined as 25% increase above baseline serum creatinine or absolute increase ≥ 0.5 mg/dL within 72 h post-embolization. Post-embolization CT was reviewed for renal enhancement patterns and presence of renal artery calcifications. The association between non-contrast CT findings and CIN development was examined by Fisher’s Exact Test.
RESULTS CIN occurred in 11/106 (10.3%) procedures (Group A, n = 10). The renal enhancement pattern in patients who did not experience CIN (Group B, n = 74 with 95/106 procedures) was late excretory in 93/95 (98%) and early excretory (EE) in 2/95 (2%). However, in Group A, there was a significantly higher rate of EE pattern (6/11, 55%) compared to late excretory pattern (5/11) (P < 0.001). A significantly higher percentage of patients that developed CIN had renal artery calcifications (6/11 vs 20/95, 55% vs 21%, P = 0.02).
CONCLUSION A hyperdense renal parenchyma relative to surrounding skeletal muscle (EE pattern) and presence of renal artery calcifications on immediate post-HAE non-contrast CT images in patients with low risk for CIN are independently associated with CIN development.
Collapse
Affiliation(s)
- Mohamed M Soliman
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Debkumar Sarkar
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Ilya Glezerman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Majid Maybody
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
10
|
Savic LJ, Chapiro J, Funai E, Bousabarah K, Schobert IT, Isufi E, Geschwind JFH, Stark S, He P, Rudek MA, Perez Lozada JC, Ayyagari R, Pollak J, Schlachter T. Prospective study of Lipiodol distribution as an imaging marker for doxorubicin pharmacokinetics during conventional transarterial chemoembolization of liver malignancies. Eur Radiol 2020; 31:3002-3014. [PMID: 33063185 DOI: 10.1007/s00330-020-07380-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To evaluate the prognostic potential of Lipiodol distribution for the pharmacokinetic (PK) profiles of doxorubicin (DOX) and doxorubicinol (DOXOL) after conventional transarterial chemoembolization (cTACE). METHODS This prospective clinical trial ( ClinicalTrials.gov : NCT02753881) included 30 consecutive participants with liver malignancies treated with cTACE (5/2016-10/2018) using 50 mg DOX/10 mg mitomycin C emulsified 1:2 with ethiodized oil (Lipiodol). Peripheral blood was sampled at 10 timepoints for standard non-compartmental analysis of peak concentrations (Cmax) and area under the curve (AUC) with dose normalization (DN). Imaging markers included Lipiodol distribution on post-cTACE CT for patient stratification into 1 segment (n = 10), ≥ 2 segments (n = 10), and lobar cTACE (n = 10), and baseline enhancing tumor volume (ETV). Adverse events (AEs) and tumor response on MRI were recorded 3-4 weeks post-cTACE. Statistics included repeated measurement ANOVA (RM-ANOVA), Mann-Whitney, Kruskal-Wallis, Fisher's exact test, and Pearson correlation. RESULTS Hepatocellular (n = 26), cholangiocarcinoma (n = 1), and neuroendocrine metastases (n = 3) were included. Stratified according to Lipiodol distribution, DOX-Cmax increased from 1 segment (DOX-Cmax, 83.94 ± 75.09 ng/mL; DN-DOX-Cmax, 2.67 ± 2.02 ng/mL/mg) to ≥ 2 segments (DOX-Cmax, 139.66 ± 117.73 ng/mL; DN-DOX-Cmax, 3.68 ± 4.20 ng/mL/mg) to lobar distribution (DOX-Cmax, 334.35 ± 215.18 ng/mL; DN-DOX-Cmax, 7.11 ± 4.24 ng/mL/mg; p = 0.036). While differences in DN-DOX-AUC remained insignificant, RM-ANOVA revealed significant separation of time concentration curves for DOX (p = 0.023) and DOXOL (p = 0.041) comparing 1, ≥ 2 segments, and lobar cTACE. Additional indicators of higher DN-DOX-Cmax were high ETV (p = 0.047) and Child-Pugh B (p = 0.009). High ETV and tumoral Lipiodol coverage also correlated with tumor response. AE occurred less frequently after segmental cTACE. CONCLUSIONS This prospective clinical trial provides updated PK data revealing Lipiodol distribution as an imaging marker predictive of DOX-Cmax and tumor response after cTACE in liver cancer. KEY POINTS • Prospective pharmacokinetic analysis after conventional TACE revealed Lipiodol distribution (1 vs. ≥ 2 segments vs. lobar) as an imaging marker predictive of doxorubicin peak concentrations (Cmax). • Child-Pugh B class and tumor hypervascularization, measurable as enhancing tumor volume (ETV) at baseline, were identified as additional predictors for higher dose-normalized doxorubicin Cmax after conventional TACE. • ETV at baseline and tumoral Lipiodol coverage can serve as predictors of volumetric tumor response after conventional TACE according to quantitative European Association for the Study of the Liver (qEASL) criteria.
Collapse
Affiliation(s)
- Lynn J Savic
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Eliot Funai
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Khaled Bousabarah
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Isabel T Schobert
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Edvin Isufi
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | | - Sophie Stark
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Ping He
- Sidney Kimmel Comprehensive Cancer Center at Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center at Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Juan Carlos Perez Lozada
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Rajasekhara Ayyagari
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jeffrey Pollak
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Bajwa R, Madoff DC, Kishore SA. Embolotherapy for Hepatic Oncology: Current Perspectives and Future Directions. DIGESTIVE DISEASE INTERVENTIONS 2020; 4:134-147. [PMID: 32832829 DOI: 10.1055/s-0040-1712146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractPrimary and secondary liver cancers are a major cause of mortality worldwide. Transarterial liver-directed therapy, or embolotherapy, represents an important locoregional treatment strategy for primary and secondary liver tumors. Embolotherapeutic modalities include bland embolization (transarterial embolization), chemoembolization (transarterial chemoembolization), and radioembolization or selective internal radiotherapy. A brief technical overview of embolotherapeutic modalities as well as supportive evidence for the treatment of most common primary and secondary liver tumors will be discussed in this review. Several potential future applications, including synergy with systemic therapy, interventional theranostics, and artificial intelligence will also be reviewed briefly.
Collapse
Affiliation(s)
- Raazi Bajwa
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Division of Interventional Radiology, New York, NY, USA
| | - David C Madoff
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, New Haven, CT, USA
| | - Sirish A Kishore
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Division of Interventional Radiology New York, NY, USA
| |
Collapse
|
12
|
van Breugel JMM, Geschwind JF, Mirpour S, Savic LJ, Zhang X, Duran R, Lin M, Miszczuk M, Liapi E, Chapiro J. Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model. Theranostics 2019; 9:3674-3686. [PMID: 31281506 PMCID: PMC6587357 DOI: 10.7150/thno.32943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The goal of this study was to investigate the role of Lipiodol as a tumor-specific imaging biomarker to determine therapeutic efficacy of cTACE and investigate its inter-dependency with tumor perfusion using radiological-pathological correlation in an animal model of liver cancer. METHODS A total of N=36 rabbits were implanted in the left lobe of the liver with VX2 tumors, treated with cTACE using doxorubicin suspended in Lipiodol, and randomly sacrificed at 24 h, 7 days, or 20 days post-TACE. Unenhanced and contrast-enhanced CT scans including a perfusion protocol were obtained before cTACE and immediately before sacrifice. Tumor vascularity and Lipiodol deposition within tumors and hepatic tissue (non-target deposits) were quantified using 3D quantitative assessment tools and measurements of arterial flow, portal flow, and perfusion index (PI). After sacrifice histologic staining, including hematoxylin and eosin (H&E), CD31, and Oil Red O (ORO) were performed on tumor and liver samples to evaluate necrosis, microvascular density (MVD), and Lipiodol retention over time. Transmission electron microscopy (TEM) was performed to assess Lipiodol deposition and clearance over time. RESULTS All cTACE procedures were carried out successfully except for one, which was excluded from further analysis. Twenty-four hours post-TACE, tumor PI (p=0.04) was significantly decreased, which was maintained at 7 days (p=0.003), but not at 20 days (p=0.4). A strong correlation (R2 = 0.894) was found between the volume of enhancing tumor tissue at baseline and Lipiodol-positive tumor volume post-TACE. Both ORO and TEM showed deposition of Lipiodol across all imaging time points within the VX2 tumors. However, gradual and ultimately near-complete Lipiodol washout was observed over time in the non-tumoral liver. MVD decreased between 24 h and 7 days post-TACE, and then increased 20 days post-TACE (both p<0.01). CONCLUSIONS Our data provide radiology-pathology evidence for the function of Lipiodol as a theranostic, tumor-specific drug delivery agent because it is both imageable and tumor-seeking, whereby it is preferentially taken up and retained by tumor cells. Those tumor-specific functions also enable Lipiodol to act as an imaging biomarker for the therapeutic efficacy of cTACE. Together with volumetric quantification of tumor vascularization on CT, Lipiodol could be used as a predictor of a patient's response to cTACE and contribute to the therapeutic management of patients with liver cancer.
Collapse
Affiliation(s)
- Johanna Maria Mijntje van Breugel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Medical faculty, Utrecht University, Utrecht, The Netherlands
| | | | - Sahar Mirpour
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Milena Miszczuk
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eleni Liapi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Liu FY, Li X, Yuan HJ, Guan Y, Wang MQ. Angio-Computed Tomograph-Guided Immediate Lipiodol Computed Tomograph for Diagnosis of Small Hepatocellular Carcinoma Lesions during Transarterial Chemoembolization. Chin Med J (Engl) 2018; 131:2410-2416. [PMID: 30334525 PMCID: PMC6202594 DOI: 10.4103/0366-6999.243554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The diagnosis and treatment of small hepatocellular carcinoma (HCC) play a vital role in the prognosis of patients with HCC. The purpose of our study was to evaluate angio-computed tomography (angio-CT)-guided immediate lipiodol CT (a CT scan performed immediately after transarterial chemoembolization [TACE]) in the diagnosis of potential HCCs ≤1 cm in diameter. METHODS This study retrospectively analyzed 31 patients diagnosed with HCCs after routine imaging (contrast-enhanced CT or magnetic resonance imaging) or pathologic examinations with undefined or undetermined tumor lesions (diameter ≤1 cm) from February 2016 to September 2016. After TACE guided by digital subtraction angiography of the angio-CT system, potential HCC lesions with a diameter ≤1 cm were diagnosed by immediate lipiodol CT. The number of well-demarcated lesions was recorded to calculate the true positive rate. The correlation between the number of small HCCs detected by immediate lipiodol CT and the size of HCC lesions (diameter >1 cm) diagnosed preoperatively was analyzed 1 month after TACE. A paired t-test was used to analyze differences in liver function. Pearson analysis was used to analyze correlation. Chi-square test was used to compare the rates. RESULTS Fifty-eight lesions were detected on preoperative routine imaging examinations in 31 patients including 15 lesions with a diameter ≤1 cm. Ninety-one lesions were detected on immediate lipiodol CT, of which 48 had a diameter ≤1 cm. After 1 month, CT showed that 45 lesions had lipiodol deposition and three lesions had lipiodol clearance. Correlation analysis showed that the number of small HCCs detected by lipiodol CT was positively correlated with the size of HCC lesions diagnosed by conventional imaging examination (R2 = 0.54, P < 0.05). CONCLUSION Immediate lipiodol CT may be a useful tool in the diagnosis of potential HCC lesions with a diameter of ≤1 cm.
Collapse
Affiliation(s)
- Feng-Yong Liu
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xin Li
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hong-Jun Yuan
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yang Guan
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Mao-Qiang Wang
- Department of Interventional Radiology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Vande Lune P, Abdel Aal AK, Klimkowski S, Zarzour JG, Gunn AJ. Hepatocellular Carcinoma: Diagnosis, Treatment Algorithms, and Imaging Appearance after Transarterial Chemoembolization. J Clin Transl Hepatol 2018; 6:175-188. [PMID: 29951363 PMCID: PMC6018317 DOI: 10.14218/jcth.2017.00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/02/2017] [Accepted: 12/02/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death, with incidence increasing worldwide. Unfortunately, the overall prognosis for patients with HCC is poor and many patients present with advanced stages of disease that preclude curative therapies. Diagnostic and interventional radiologists play a key role in the management of patients with HCC. Diagnostic radiologists can use contrast-enhanced computed tomography (CT), magnetic resonance imaging, and ultrasound to diagnose and stage HCC, without the need for pathologic confirmation, by following established criteria. Once staged, the interventional radiologist can treat the appropriate patients with percutaneous ablation, transarterial chemoembolization, or radioembolization. Follow-up imaging after these liver-directed therapies for HCC can be characterized according to various radiologic response criteria; although, enhancement-based criteria, such as European Association for the Study of the Liver and modified Response Evaluation Criteria in Solid Tumors, are more reflective of treatment effect in HCC. Newer imaging technologies like volumetric analysis, dual-energy CT, cone beam CT and perfusion CT may provide additional benefits for patients with HCC.
Collapse
Affiliation(s)
- Patrick Vande Lune
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Ahmed K. Abdel Aal
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Klimkowski
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica G. Zarzour
- Division of Abdominal Imaging, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew J. Gunn
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- *Correspondence to: Andrew J. Gunn, Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, 619 19 St S, NHB 623, Birmingham, AL 35249, USA. Tel: +1-205-975-4850, Fax: +1-205-975-5257, E-mail:
| |
Collapse
|
15
|
Lewis AL, Willis SL, Dreher MR, Tang Y, Ashrafi K, Wood BJ, Levy EB, Sharma KV, Negussie AH, Mikhail AS. Bench-to-clinic development of imageable drug-eluting embolization beads: finding the balance. Future Oncol 2018; 14:2741-2760. [PMID: 29944007 DOI: 10.2217/fon-2018-0196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review describes the historical development of an imageable spherical embolic agent and focuses on work performed in collaboration between Biocompatibles UK Ltd (a BTG International group company) and the NIH to demonstrate radiopaque bead utility and bring a commercial offering to market that meets a clinical need. Various chemistries have been investigated and multiple prototypes evaluated in search of an optimized product with the right balance of handling and imaging properties. Herein, we describe the steps taken in the development of DC Bead LUMI™, the first commercially available radiopaque drug-eluting bead, ultimately leading to the first human experience of this novel embolic agent in the treatment of liver tumors.
Collapse
Affiliation(s)
- Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Sean L Willis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Matthew R Dreher
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Yiqing Tang
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Koorosh Ashrafi
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, GU15 3YL, UK
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Karun V Sharma
- Department of Radiology & Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology & Imaging Sciences, NIH Clinical Center, National Institute of Biomedical Imaging & Bioengineering, & National Cancer Institute Center for Cancer Research, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|