3
|
Ghetti C, Ortenzia O, Bertolini M, Sceni G, Sverzellati N, Silva M, Maddalo M. Lung dual energy CT: Impact of different technological solutions on quantitative analysis. Eur J Radiol 2023; 163:110812. [PMID: 37068414 DOI: 10.1016/j.ejrad.2023.110812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE To evaluated the accuracy of spectral parameters quantification of four different CT scanners in dual energy examinations of the lung using a dedicated phantom. METHOD Measurements were made with different technologies of the same vendor: one dual source CT scanner (DSCT), one TwinBeam (i.e. split filter) and two sequential acquisition single source scanners (SSCT). Angular separation of Calcium and Iodine signals were calculated from scatter plots of low-kVp versus high-kVp HUs. Electron density (ρe), effective atomic number (Zeff) and Iodine concentration (Iconc) were measured using Syngo.via software. Accuracy (A) of ρe, Zeff and Iconc was evaluated as the absolute percentage difference (D%) between reference values and measured ones, while precision (P) was evaluated as the variability σ obtained by repeating the measurement with different acquisition/reconstruction settings. RESULTS Angular separation was significantly larger for DSCT (α = 9.7°) and for sequential SSCT (α = 9.9°) systems. TwinBeam was less performing in material separation (α = 5.0°). The lowest average A was observed for TwinBeam (Aρe = [4.7 ± 1.0], AZ = [9.1 ± 3.1], AIconc = [19.4 ± 4.4]), while the best average A was obtained for Flash (Aρe = [1.8 ± 0.4], AZ = [3.5 ± 0.7], AIconc = [7.3 ± 1.8]). TwinBeam presented inferior average P (Pρe = [0.6 ± 0.1], PZ = [1.1 ± 0.2], PIconc = [10.9 ± 4.9]), while other technologies demonstrate a comparable average. CONCLUSIONS Different technologies performed material separation and spectral parameter quantification with different degrees of accuracy and precision. DSCT performed better while TwinBeam demonstrated not excellent performance. Iodine concentration measurements exhibited high variability due to low Iodine absolute content in lung nodules, thus limiting its clinical usefulness in pulmonary applications.
Collapse
Affiliation(s)
- Caterina Ghetti
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Ornella Ortenzia
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Marco Bertolini
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giada Sceni
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Sverzellati
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Mario Silva
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Michele Maddalo
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
4
|
Dewaguet J, Copin MC, Duhamel A, Faivre JB, Deken V, Sedlmair M, Flohr T, Schmidt B, Cortot A, Wasielewski E, Remy J, Remy-Jardin M. Dual-Energy CT Perfusion of Invasive Tumor Front in Non-Small Cell Lung Cancers. Radiology 2021; 302:448-456. [PMID: 34783594 DOI: 10.1148/radiol.2021210600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Active endothelial cell proliferation occurs at the tumor edge, known as the invading-tumor front. This study focused on perfusion analysis of non-small cell lung cancers. Purpose To analyze dual-phase, dual-energy CT perfusion according to the degree of tumor hypoxia. Materials and Methods This prospective study was performed 2016-2017. A two-phase dual-energy CT protocol was obtained for consecutive participants with operable non-small cell lung cancer. The first pass and delayed iodine concentration within the tumor and normalized iodine uptake, corresponding to the iodine concentration within the tumor normalized to iodine concentration within the aorta, were calculated for the entire tumor and within three peripheral layers automatically segmented (ie, 2-mm-thick concentric subvolumes). The expression of the membranous carbonic anhydrase (mCA) IX, a marker of tumor hypoxia, was assessed in tumor specimens. Comparative analyses according to the histologic subtypes, type of resected tumors, and mCA IX expression were performed. Results There were 33 mCA IX-positive tumors and 16 mCA IX-negative tumors. In the entire tumor, the mean normalized iodine uptake was higher on delayed than on first-pass acquisitions (0.35 ± 0.17 vs 0.13 ± 0.15, respectively; P < .001). A single layer, located at the edge of the tumor, showed higher values of the iodine concentration (median, 0.53 mg/mL vs 0.21 mg/mL, respectively; P = .03) and normalized iodine uptake (0.04 vs 0.02, respectively; P = .03) at first pass in mCA IX-positive versus mCA IX-negative tumors. Within this layer, a functional profile of neovascularization was found in 23 of 33 (70%) of mCA IX-positive tumors, and the median mCA IX score of these tumors was higher than in tumors with a nonfunctional profile of neovascularization (median mCA IX score, 20 vs 2, respectively; P = .03). Conclusion A two-phase dual-energy CT examination depicted higher perfusion between the tumor edge and lung parenchyma in hypoxic tumors. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Murphy and Ryan in this issue.
Collapse
Affiliation(s)
- Julie Dewaguet
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Marie-Christine Copin
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Alain Duhamel
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Jean-Baptiste Faivre
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Valérie Deken
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Martin Sedlmair
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Thomas Flohr
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Bernhard Schmidt
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Alexis Cortot
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Eric Wasielewski
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Jacques Remy
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| | - Martine Remy-Jardin
- From the Departments of Thoracic Imaging (J.D., J.B.F., J.R., M.R.J.) and Biomedical Statistics (A.D., V.D.), ULR 2694 Evaluation des Technologies de Santé et des Pratiques Médicales (METRICS), and Department of Pathology (M.C.C.), CHU Lille, University of Lille, 59000 Lille, France; Department of Research and Development, Siemens Healthcare, Computed Tomography, Forchheim, Germany (M.S., T.F., B.S.); and Department of Thoracic Oncology, Calmette Hospital, CHU Lille, University of Lille, Lille, France (A.C., E.W.)
| |
Collapse
|
5
|
Chen S, Zhang J, Quan X, Xie Y, Deng X, Zhang Y, Shi S, Liang Z. Diagnostic accuracy of dual-energy computed tomography to differentiate intracerebral hemorrhage from contrast extravasation after endovascular thrombectomy for acute ischemic stroke: systematic review and meta-analysis. Eur Radiol 2021; 32:432-441. [PMID: 34327578 DOI: 10.1007/s00330-021-08212-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/27/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To assess whether dual-energy computed tomography (DECT), using conventional computed tomography or magnetic resonance imaging as a reference standard, is sufficiently accurate to differentiate intracerebral hemorrhage from contrast extravasation after endovascular thrombectomy for acute ischemic stroke. METHODS On January 20, 2021, we searched the PubMed Medline, Embase, Web of Science, and Cochrane Library databases. QUADAS-2 was used to assess the risk of bias and applicability. Meta-analyses were performed using a bivariate random-effects model. To explore sources of heterogeneity, meta-regression analyses were performed. Deeks' funnel plot asymmetry test was used to assess publication bias. RESULTS A total of 7 studies (269 patients, 269 focal areas) were included. The pooled mean sensitivity, specificity, and accuracy of DECT in identifying intracerebral hemorrhage from contrast extravasation after mechanical thrombectomy for acute ischemic stroke were 0.77 (95% confidence interval (CI) 0.29 to 0.96), 1 (95% CI 0.86 to 1), and 0.99 (95% CI 0.98 to 1), respectively. This evidence was of moderate certainty due to the risk of bias. Higgin's I-squared for study heterogeneity was observed for the pooled sensitivity (I2 = 78.88%) and pooled specificity (I2 = 82.12%). Moreover, Deeks' funnel plot asymmetry test revealed no publication bias (p = 0.38). CONCLUSION DECT shows excellent accuracy and specificity in differentiating intracerebral hemorrhage from contrast extravasation after endovascular thrombectomy for acute ischemic stroke. Nevertheless, there was substantial and moderate heterogeneity among the studies. Future large-scale, prospective cohort studies are warranted to validate our findings. KEY POINTS • Dual-energy computed tomography shows excellent accuracy and specificity in differentiating intracerebral hemorrhage from contrast extravasation after endovascular thrombectomy for acute ischemic stroke. • Via meta-regression analysis, we found various possible covariates, including the publication date, image analysis, index test time, time of follow-up imaging, and reference standard judgment, that had an important effect on the heterogeneity. • There were no concerns regarding applicability in any of the included studies.
Collapse
Affiliation(s)
- Shijian Chen
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Zhang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuemei Quan
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiju Xie
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuhui Deng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yueling Zhang
- Department of Neurology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengliang Shi
- Department of Neurology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijian Liang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|