1
|
Kravchenko D, Gnasso C, Schoepf UJ, Vecsey-Nagy M, Tremamunno G, O'Doherty J, Zhang A, Luetkens JA, Kuetting D, Attenberger U, Schmidt B, Varga-Szemes A, Emrich T. Gadolinium-based coronary CT angiography on a clinical photon-counting-detector system: a dynamic circulating phantom study. Eur Radiol Exp 2024; 8:118. [PMID: 39422839 PMCID: PMC11489376 DOI: 10.1186/s41747-024-00501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) offers non-invasive diagnostics of the coronary arteries. Vessel evaluation requires the administration of intravenous contrast. The purpose of this study was to evaluate the utility of gadolinium-based contrast agent (GBCA) as an alternative to iodinated contrast for CCTA on a first-generation clinical dual-source photon-counting-detector (PCD)-CT system. METHODS A dynamic circulating phantom containing a three-dimensional-printed model of the thoracic aorta and the coronary arteries were used to evaluate injection protocols using gadopentetate dimeglumine at 50%, 100%, 150%, and 200% of the maximum approved clinical dose (0.3 mmol/kg). Virtual monoenergetic image (VMI) reconstructions ranging from 40 keV to 100 keV with 5 keV increments were generated on a PCD-CT. Contrast-to-noise ratio (CNR) was calculated from attenuations measured in the aorta and coronary arteries and noise measured in the background tissue. Attenuation of at least 350 HU was deemed as diagnostic. RESULTS The highest coronary attenuation (441 ± 23 HU, mean ± standard deviation) and CNR (29.5 ± 1.5) was achieved at 40 keV and at the highest GBCA dose (200%). There was a systematic decline of attenuation and CNR with higher keV reconstructions and lower GBCA doses. Only reconstructions at 40 and 45 keV at 200% and 40 keV at 150% GBCA dose demonstrated sufficient attenuation above 350 HU. CONCLUSION Current PCD-CT protocols and settings are unsuitable for the use of GBCA for CCTA at clinically approved doses. Future advances to the PCD-CT system including a 4-threshold mode, as well as multi-material decomposition may add new opportunities for k-edge imaging of GBCA. RELEVANCE STATEMENT Patients allergic to iodine-based contrast media and the future of multicontrast CT examinations would benefit greatly from alternative contrast media, but the utility of GBCA for coronary photon-counting-dector-CT angiography remains limited without further optimization of protocols and scanner settings. KEY POINTS GBCA-enhanced coronary PCD-CT angiography is not feasible at clinically approved doses. GBCAs have potential applications for the visualization of larger vessels, such as the aorta, on PCD-CT angiography. Higher GBCA doses and lower keV reconstructions achieved higher attenuation values and CNR.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Chiara Gnasso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Milan Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Giuseppe Tremamunno
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Radiology Unit-Sant'Andrea University Hospital, Rome, Italy
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Siemens Medical Solutions USA Inc, Malvern, PA, USA
| | - Andrew Zhang
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
2
|
Allen TJ, Bancroft LCH, Kumar M, Bradshaw TJ, Strigel RM, McMillan AB, Fowler AM. Gadolinium-Based Contrast Agent Attenuation Does Not Impact PET Quantification in Simultaneous Dynamic Contrast Enhanced Breast PET/MR. Med Phys 2022; 49:5206-5215. [PMID: 35621727 DOI: 10.1002/mp.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Simultaneous PET/MR imaging involves injection of a radiopharmaceutical and often also includes administration of a gadolinium-based contrast agent (GBCA). Phantom model studies indicate that attenuation of annihilation photons by GBCAs does not bias quantification metrics of PET radiopharmaceutical uptake. However, a direct comparison of attenuation corrected PET values before and after administration of GBCA has not been performed in patients imaged with simultaneous dynamic PET/MR. The purpose of this study was to investigate the attenuating effect of GBCAs on standardized uptake value (SUV) quantification of 18 F-fluorodeoxyglucose (FDG) uptake in invasive breast cancer and normal tissues using simultaneous PET/MR. METHODS The study included 13 women with newly diagnosed invasive breast cancer imaged using simultaneous dedicated prone breast PET/MR with FDG. PET data collection and two-point Dixon based MR attenuation correction sequences began simultaneously before the administration of GBCA to avoid a potential impact of GBCA on the attenuation correction map. A standard clinical dose of GBCA was intravenously administered for the dynamic contrast enhanced MR sequences obtained during the simultaneous PET data acquisition. PET data were dynamically reconstructed into 60 frames of 30 seconds each. Three timing windows were chosen consisting of a single frame (30 seconds), two frames (60 seconds), or four frames (120 seconds) immediately before and after contrast administration. SUVmax and SUVmean of the biopsy-proven breast malignancy, fibroglandular tissue of the contralateral normal breast, descending aorta, and liver were calculated prior to and following GBCA administration. Percent change in the SUV metrics were calculated to test for a statistically significant, non-zero percent change using Wilcoxon signed-rank tests. RESULTS No statistical change in SUVmax or SUVmean was found for the breast malignancies or normal anatomical regions during the timing windows before and after GBCA administration. CONCLUSIONS GBCAs do not significantly impact the results of PET quantification by means of additional attenuation. However, GBCAs may still affect quantification by affecting MR acquisitions used for MR-based attenuation correction which this study did not address. Corrections to account for attenuation due to clinical concentrations of GBCAs are not necessary in simultaneous PET/MR examinations when MR-based attenuation correction sequences are performed prior to GBCA administration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Timothy J Allen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Tyler J Bradshaw
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Amy M Fowler
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| |
Collapse
|
3
|
|
4
|
O' Doherty J, Chalampalakis Z, Schleyer P, Nazir MS, Chiribiri A, Marsden PK. The effect of high count rates on cardiac perfusion quantification in a simultaneous PET-MR system using a cardiac perfusion phantom. EJNMMI Phys 2017; 4:31. [PMID: 29230607 PMCID: PMC5725400 DOI: 10.1186/s40658-017-0199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET-MRI is under investigation as a new strategy for quantitative myocardial perfusion imaging. Consideration is required as to the maximum scanner count rate in order to limit dead-time losses resulting from administered activity in the scanner field of view during the first pass of the radiotracer. RESULTS We performed a decaying-source experiment to investigate the high count-rate performance of a PET-MR system (Siemens mMR) over the expected range of activities during a clinical study. We also performed imaging of a cardiac perfusion phantom, which provides an experimental simulation of clinical transit of a simultaneous radiotracer (phantom injected activities range 252 to 997 MBq) and gadolinium-based contrast agent (GBCA). Time-activity and time-intensity curves of the aorta and myocardium compartments from PET and MR images were determined, and quantification of perfusion was then performed using a standard cardiac kinetic model. The decaying-source experiment showed a maximum noise equivalent count rate (NECRmax) of 286 kcps at a singles rate of 47.1 Mcps. NECR was maintained within 5% (NECR95%) of the NECRmax with a singles rate of 34.1 Mcps, corresponding to 310 MBq in the phantom. Count-rate performance was degraded above the singles rate of 64.9 Mcps due to the number of detection events impacting the quantitative accuracy of reconstructed images. A 10% bias in image activity concentration was observed between singles rates of 78.2 and 82.9 Mcps. Perfusion phantom experiments showed that image-based activity concentration and quantified values of perfusion were affected by count losses when the total singles rate was greater than 64.9 Mcps. This occurred during the peak arterial input function (AIF) phase of imaging for injected activities to the phantom of 600 MBq and greater. CONCLUSIONS Care should be taken to avoid high count-rate losses in simultaneous PET-MRI studies. Based on our results in phantoms, bias in reconstructed images should be avoided by adhering to a singles rate lower than 64.9 Mcps on the mMR system. Quantification of perfusion values using singles rates higher than 64.9 Mcps on this system may be compromised and should be avoided.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK.
- Department of Molecular Imaging, Sidra Medical and Research Center, Al Luqta St, Doha, Qatar.
| | - Zacharias Chalampalakis
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK
| | | | - Muhummad Sohaib Nazir
- BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Amedeo Chiribiri
- BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul K Marsden
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK
| |
Collapse
|
5
|
O'Doherty J, Sammut E, Schleyer P, Stirling J, Nazir MS, Marsden PK, Chiribiri A. Feasibility of simultaneous PET-MR perfusion using a novel cardiac perfusion phantom. Eur J Hybrid Imaging 2017; 1:4. [PMID: 29782598 PMCID: PMC5954708 DOI: 10.1186/s41824-017-0008-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 01/29/2023] Open
Abstract
Background PET-MR scanners are beginning to be employed for quantitative myocardial perfusion imaging. In order to examine simultaneous perfusion calculations, this work describes a feasibility study of simultaneous PET-MR of gadolinium-based contrast agent (GBCA) and PET radiotracer in a novel cardiac perfusion phantom. Results [18F]F− and GBCA were injected simultaneously into a cardiac phantom using a range of ground-truth myocardial perfusion rates of 1 to 5 ml/g/min. PET quantification of K1 (ml/g/min) was performed using a single tissue compartment model. MR perfusion was calculated using a model-independent signal deconvolution technique. PET and MR signal traces from the phantom aorta and myocardial sections show true simultaneous PET and MR arterial input functions (AIF) and myocardial uptake respectively at each perfusion rate. Calculation of perfusion parameters showed both K1 and h(t = 0) (PET and MR perfusion parameters respectively) to be linearly related with the ground truth perfusion rate (PT), and also linearly related to each other (R2 = 0.99). The highest difference in perfusion values between K1 and PT was 16% at 1 ml/g/min, and the mean difference for all other perfusion rates was <3%. Conclusions The perfusion phantom allows accurate and reproducible simulation of the myocardial kinetics for simultaneous PET-MR imaging, and may find use in protocol design and development of PET-MR based quantification techniques and direct comparison of quantification of the two modalities.
Collapse
Affiliation(s)
- Jim O'Doherty
- 1Division of Imaging Sciences and Biomedical Engineering, PET Imaging Centre, King's College London, St. Thomas' Hospital, 1st Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH UK
| | - Eva Sammut
- 2Division of Imaging Sciences, King's College London, Wellcome Trust/EPSRC Medical Engineering Centre, St. Thomas' Hospital, London, UK.,3Bristol Heart Institute, Bristol, UK
| | | | - James Stirling
- 1Division of Imaging Sciences and Biomedical Engineering, PET Imaging Centre, King's College London, St. Thomas' Hospital, 1st Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH UK
| | - Muhummad Sohaib Nazir
- 2Division of Imaging Sciences, King's College London, Wellcome Trust/EPSRC Medical Engineering Centre, St. Thomas' Hospital, London, UK.,5Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul K Marsden
- 1Division of Imaging Sciences and Biomedical Engineering, PET Imaging Centre, King's College London, St. Thomas' Hospital, 1st Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH UK
| | - Amedeo Chiribiri
- 2Division of Imaging Sciences, King's College London, Wellcome Trust/EPSRC Medical Engineering Centre, St. Thomas' Hospital, London, UK.,5Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|