1
|
Irregularities in Meiotic Prophase I as Prerequisites for Reproductive Isolation in Experimental Hybrids Carrying Robertsonian Translocations. DIVERSITY 2023. [DOI: 10.3390/d15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei, whose founder animals were animals with identical diploid numbers 2n = 50 but with different Robertsonian translocations (Rb), namely 2Rb4.12 and 2Rb9.13 in the female and 2Rb.2.18 and 2Rb5.9 in the male. Here, we analyzed strictly inbred hybrids (F1, fertile and F10, sterile) using immunocytochemical methods in order to study spermatocytes during the meiotic prophase I. Previously, the presence of trivalents was assumed to have no significant effect on spermatogenesis and fertility in hybrids, but we demonstrated that spermatogenesis might be disturbed due to the cumulative effects of the retarded synapses of Rb bivalents as well as trivalents and their associations with XX sex bivalents. Alterations in the number of gametes due to the described processes led to a decrease in reproductive capacity up to sterility and can be examined as a mechanism for reproductive isolation, thus starting speciation.
Collapse
|
2
|
de Almeida BRR, Noronha RCR, Cardoso AL, Martins C, Martins JG, Procópio REDL, Nagamachi CY, Pieczarka JC. Kinetic Activity of Chromosomes and Expression of Recombination Genes in Achiasmatic Meiosis of Tityus (Archaeotityus) Scorpions. Int J Mol Sci 2022; 23:ijms23169179. [PMID: 36012447 PMCID: PMC9408970 DOI: 10.3390/ijms23169179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several species of Tityus (Scorpiones, Buthidae) present multi-chromosomal meiotic associations and failures in the synaptic process, originated from reciprocal translocations. Holocentric chromosomes and achiasmatic meiosis in males are present in all members of this genus. In the present study, we investigated synapse dynamics, transcriptional silencing by γH2AX, and meiotic microtubule association in bivalents and a quadrivalent of the scorpion Tityus maranhensis. Additionally, we performed RT-PCR to verify the expression of mismatch repair enzymes involved in crossing-over formation in Tityus silvestris gonads. The quadrivalent association in T. maranhensis showed delay in the synaptic process and long asynaptic regions during pachytene. In this species, γH2AX was recorded only at the chromosome ends during early stages of prophase I; in metaphase I, bivalents and quadrivalents of T. maranhensis exhibited binding to microtubules along their entire length, while in metaphase II/anaphase II transition, spindle fibers interacted only with telomeric regions. Regarding T. silvestris, genes involved in the recombination process were transcribed in ovaries, testes and embryos, without significant difference between these tissues. The expression of these genes during T. silvestris achiasmatic meiosis is discussed in the present study. The absence of meiotic inactivation by γH2AX and holo/telokinetic behavior of the chromosomes are important factors for the maintenance of the quadrivalent in T. maranhensis and the normal continuation of the meiotic cycle in this species.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Itaituba, R. Universitário, s/n, Maria Magdalena, Itaituba 68183-300, PA, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Jonas Gama Martins
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936-Petrópolis, Manaus 69067-375, AM, Brazil
| | - Rudi Emerson de Lima Procópio
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas (UEA), Avenida Carvalho Leal, 1777-Cachoeirinha, Manaus 69065-170, AM, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Correspondence:
| |
Collapse
|
3
|
Ribagorda M, Berríos S, Solano E, Ayarza E, Martín-Ruiz M, Gil-Fernández A, Parra MT, Viera A, Rufas JS, Capanna E, Castiglia R, Fernández-Donoso R, Page J. Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics. Chromosoma 2019; 128:149-163. [PMID: 30826871 DOI: 10.1007/s00412-019-00695-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/27/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.
Collapse
Affiliation(s)
- Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emanuela Solano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Eliana Ayarza
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ernesto Capanna
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Berríos S, Fernández-Donoso R, Page J, Ayarza E, Capanna E, Solano E, Castiglia R. Hexavalents in spermatocytes of Robertsonian heterozygotes between Mus m. domesticus 2n=26 from the Vulcano and Lipari Islands (Aeolian Archipelago, Italy). Eur J Histochem 2018; 62:2894. [PMID: 29569877 PMCID: PMC5827110 DOI: 10.4081/ejh.2018.2894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 10/27/2022] Open
Abstract
The size and shape of the chromosomes, as well as the chromosomal domains that compose them, are determinants in the distribution and interaction between the bivalents within the nucleus of spermatocytes in prophase I of meiosis. Thus the nuclear architecture characteristic of the karyotype of a species can be modified by chromosomal changes such as Rb chromosomes. In this study we analysed the meiotic prophase nuclear organization of the heterozygous spermatocytes from Mus musculus domesticus 2n=26, and the synaptic configuration of the hexavalent formed by the dependent Rb chromosomes Rbs 6.16, 16.10, 10.15, 15.17 and the telocentric chromosomes 6 and 17. Spreads of 88 pachytene spermatocytes from two males were studied and in all of them five metacentric bivalents, four telocentric bivalents, one hexavalent and the XY bivalent were observed. About 48% of the hexavalents formed a chain or a ring of synapsed chromosomes, the latter closed by synapsis between the short arms of telocentric chromosomes 6 and 17. About 52% of hexavalents formed an open chain of 10 synapsed chromosomal arms belonging to 6 chromosomes. In about half of the unsynapsed hexavalents one of the telocentric chromosome short arms appears associated with the X chromosome single axis, which was otherwise normally paired with the Y chromosome. The cluster of pericentromeric heterochromatin mostly determines the hexavalent's nuclear configuration, dragging the centromeric regions and all the chromosomes towards the nuclear envelope similar to an association of five telocentric bivalents. These reiterated encounters between these chromosomes restrict the interactions with other chromosomal domains and might favour eventual rearrangements within the metacentric, telocentric or hexavalent chromosome subsets. The unsynapsed short arms of telocentric chromosomes frequently bound to the single axis of the X chromosome could further complicate the already complex segregation of hexavalent chromosomes.
Collapse
|