1
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Espina G, Muñoz-Ibacache SA, Cáceres-Moreno P, Amenabar MJ, Blamey JM. From the Discovery of Extremozymes to an Enzymatic Product: Roadmap Based on Their Applications. Front Bioeng Biotechnol 2022; 9:752281. [PMID: 35096788 PMCID: PMC8790482 DOI: 10.3389/fbioe.2021.752281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
With the advent of the industrial revolution, the use of toxic compounds has grown exponentially, leading to a considerable pollution of the environment. Consequently, the development of more environmentally conscious technologies is an urgent need. Industrial biocatalysis appears as one potential solution, where a higher demand for more robust enzymes aims to replace toxic chemical catalysts. To date, most of the commercially available enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of temperature and pH (i.e., between 20°C and 45°C, neutral pH), limiting their actual application under industrial reaction settings, where they usually underperform, requiring larger quantities to compensate loss of activity. In order to obtain novel biocatalysts better suited for industrial conditions, an efficient solution is to take advantage of nature by searching and discovering enzymes from extremophiles. These microorganisms and their macromolecules have already adapted to thrive in environments that present extreme physicochemical conditions. Hence, extremophilic enzymes stand out for showing higher activity, stability, and robustness than their mesophilic counterparts, being able to carry out reactions at nonstandard conditions. In this brief research report we describe three examples to illustrate a stepwise strategy for the development and production of commercial extremozymes, including a catalase from an Antarctic psychrotolerant microorganism, a laccase from a thermoalkaliphilic bacterium isolated from a hot spring and an amine-transaminase from a thermophilic bacterium isolated from a geothermal site in Antarctica. We will also explore some of their interesting biotechnological applications and comparisons with commercial enzymes.
Collapse
Affiliation(s)
- Giannina Espina
- Fundación Biociencia, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| |
Collapse
|
4
|
Vicente J, de Celis M, Alonso A, Marquina D, Santos A. Microbial Communities Present in Hydrothermal Sediments from Deception Island, Antarctica. Microorganisms 2021; 9:microorganisms9081631. [PMID: 34442712 PMCID: PMC8399207 DOI: 10.3390/microorganisms9081631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Deception Island is a geothermal location in Antarctica that presents active fumaroles, which confers unique characteristics to this habitat. Several studies about microbial communities in Antarctica have been carried out, nevertheless, Antarctic microbiota is still partially unknown. Here we present a multidisciplinary study about sediments obtained by deposition during 4 years in which several approaches have been considered for their characterization. First, a physicochemical characterization, using ionic chromatography and mass spectrometry for the determination of most abundant ions (chloride and sulphate) and elements (mainly silicon), was conducted. In addition, the total microbial community was studied using a metataxonomical approach, revealing a bacterial community dominated by Proteobacteria and Thaumarchaeota as the main archaeal genera and a fungal community mainly composed by Aspergillaceae. Culture-dependent studies showed low microbial diversity, only achieving the isolation of Bacillus-related species, some of them thermophilic, and the isolation of common fungi of Aspergillus or Penicillium spp. Furthermore, diatoms were detected in the sediment and characterized attending to their morphological characteristics using scanning electron microscopy. The study reveals a high influence of the physicochemical conditions in the microbial populations and their distribution, offering valuable data on the interaction between the island and water microbiota.
Collapse
|
5
|
Cabrera MÁ, Márquez SL, Quezada CP, Osorio MI, Castro-Nallar E, González-Nilo FD, Pérez-Donoso JM. Biotransformation of 2,4,6-Trinitrotoluene by Pseudomonas sp. TNT3 isolated from Deception Island, Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113922. [PMID: 32443190 DOI: 10.1016/j.envpol.2020.113922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 06/11/2023]
Abstract
2,4,6-Trinitrotoluene (TNT) is a nitroaromatic explosive, highly toxic and mutagenic for organisms. In this study, we report for the first time the screening and isolation of TNT-degrading bacteria from Antarctic environmental samples with potential use as bioremediation agents. Ten TNT-degrading bacterial strains were isolated from Deception Island. Among them, Pseudomonas sp. TNT3 was selected as the best candidate since it showed the highest tolerance, growth, and TNT biotransformation capabilities. Our results showed that TNT biotransformation involves the reduction of the nitro groups. Additionally, Pseudomonas sp. TNT3 was capable of transforming 100 mg/L TNT within 48 h at 28 °C, showing higher biotransformation capability than Pseudomonas putida KT2440, a known TNT-degrading bacterium. Functional annotation of Pseudomonas sp. TNT3 genome revealed a versatile set of molecular functions involved in xenobiotic degradation pathways. Two putative xenobiotic reductases (XenA_TNT3 and XenB_TNT3) were identified by means of homology searches and phylogenetic relationships. These enzymes were also characterized at molecular level using homology modelling and molecular dynamics simulations. Both enzymes share different levels of sequence similarity with other previously described TNT-degrading enzymes and with their closest potential homologues in databases.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Sebastián L Márquez
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Carolina P Quezada
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Manuel I Osorio
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Fernando D González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Av. República 330, Santiago, Chile.
| |
Collapse
|
6
|
Márquez SL, Atalah J, Blamey JM. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol 2019; 131:109423. [PMID: 31615676 DOI: 10.1016/j.enzmictec.2019.109423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Amine-transaminases (ATAs) are enzymes that catalyze the reversible transfer of an amino group between primary amines and carbonyl compounds. They have been widely studied in the last decades for their application in stereoselective synthesis of chiral amines, which are one of the most valuable building blocks in pharmaceuticals manufacturing. Their excellent enantioselectivity, use of low-cost substrates and no need for external cofactors has turned these enzymes into a promising alternative to the chemical synthesis of chiral amines. Nevertheless, its application at industrial scale remains limited mainly because most of the available ATAs are scarcely tolerant to harsh reaction conditions such as high temperatures and presence of organic solvents. In this work, a novel (S)-ATA was discovered in a thermophilic bacterium, Albidovulum sp. SLM16, isolated from a geothermal Antarctic environmental sample, more specifically from a shoreline fumarole in Deception Island. The transaminase-coding gene was identified in the genome of the microorganism, cloned and overexpressed in Escherichia coli for biochemical characterization. The activity of the recombinant ATA was optimal at 65 °C and pH 9.5. Molecular mass estimates suggest a 75 kDa homodimeric structure. The enzyme turned out to be highly thermostable, maintaining 80% of its specific activity after 5 days of incubation at 50 °C. These results indicate that ATA_SLM16 is an excellent candidate for potential applications in biocatalytic synthesis. To the best of our knowledge, this would be the first report of the characterization of a thermostable (S)-ATA discovered by means of in vivo screening of thermophilic microorganisms.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Joaquín Atalah
- Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Jenny M Blamey
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile.
| |
Collapse
|