1
|
Zhu M, Liang J, Wang W, Deng H, Huang Y. Deficits of the "Good" Eye in Amblyopia: Processing Geometric Properties. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39028978 PMCID: PMC11262476 DOI: 10.1167/iovs.65.8.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Purpose Although fellow eyes of amblyopia are typically considered normal, recent studies have revealed impairments in certain aspects of vision. However, it remains unclear at which level of object processing these impairments occur. This study aims to investigate the functional level of visual perception impairment in the fellow eye of children and adults with amblyopia using the geometric functional hierarchy discrimination task based on Klein Mathematics methodology. Methods Seventy-six patients with amblyopia (40 children and 36 adults) and 77 age-matched healthy controls (40 children and 37 adults) were recruited for this study. The participants completed four sets of geometric hierarchies (in ascending order of stability: Euclidean, affine, projective, and topology) and one set of color discrimination tasks. They were instructed to rapidly and accurately select a distinct shape from the four quadrants. Results The participants' performance was evaluated using the inverse efficiency (IE) score (IE = response time (RT)/accuracy). The results of IEs show that the fellow eye of children with amblyopia exhibits normal topological processing, yet displays higher IEs in other geometric properties and color processing, suggesting impairments in these specific discrimination abilities. However, adults with amblyopia did not show deficits on any discrimination types compared with adult controls. Conclusions The lack of compromised topological processing suggests that amblyopia may not have inflicted any damage to the subcortical visual pathways. Furthermore, these deficits observed in the fellow eye tend to diminish significantly during adulthood, implying that amblyopia may potentially hinder the maturation process of the fellow eye.
Collapse
Affiliation(s)
- Minjuan Zhu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Guangdong, China
- Shaoxing People's Hospital, Zhejiang, China
| | - Jianhui Liang
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Wang
- Beijing Normal University, Beijing, China
| | - Hongwei Deng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Guangdong, China
| | - Yan Huang
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Pei H, Jiang S, Liu M, Ye G, Qin Y, Liu Y, Duan M, Yao D, Luo C. Simultaneous EEG-fMRI Investigation of Rhythm-Dependent Thalamo-Cortical Circuits Alteration in Schizophrenia. Int J Neural Syst 2024; 34:2450031. [PMID: 38623649 DOI: 10.1142/s012906572450031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Schizophrenia is accompanied by aberrant interactions of intrinsic brain networks. However, the modulatory effect of electroencephalography (EEG) rhythms on the functional connectivity (FC) in schizophrenia remains unclear. This study aims to provide new insight into network communication in schizophrenia by integrating FC and EEG rhythm information. After collecting simultaneous resting-state EEG-functional magnetic resonance imaging data, the effect of rhythm modulations on FC was explored using what we term "dynamic rhythm information." We also investigated the synergistic relationships among three networks under rhythm modulation conditions, where this relationship presents the coupling between two brain networks with other networks as the center by the rhythm modulation. This study found FC between the thalamus and cortical network regions was rhythm-specific. Further, the effects of the thalamus on the default mode network (DMN) and salience network (SN) were less similar under alpha rhythm modulation in schizophrenia patients than in controls ([Formula: see text]). However, the similarity between the effects of the central executive network (CEN) on the DMN and SN under gamma modulation was greater ([Formula: see text]), and the degree of coupling was negatively correlated with the duration of disease ([Formula: see text], [Formula: see text]). Moreover, schizophrenia patients exhibited less coupling with the thalamus as the center and greater coupling with the CEN as the center. These results indicate that modulations in dynamic rhythms might contribute to the disordered functional interactions seen in schizophrenia.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mei Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Guofeng Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yayun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
3
|
Wang J, Jia J, Sun Y, Ma CB, Chen YZ, Liu AG, Yan XK. Brain mechanism of acupuncture for children with anisometropic amblyopia: a resting functional magnetic resonance imaging study based on voxel-mirrored homotopic connectivity. Int J Ophthalmol 2024; 17:339-347. [PMID: 38371252 PMCID: PMC10827612 DOI: 10.18240/ijo.2024.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
AIM To explore the brain mechanism of acupuncture for children with anisometropic amblyopia using the voxel-mirror homotopic connectivity (VMHC) analysis method of resting functional magnetic resonance imaging (rs-fMRI) technology based on clinical effectiveness. METHODS Eighty children with anisometropic monocular amblyopia were randomly divided into two groups: control (40 cases, 1 case of shedding) and acupuncture (40 cases, 1 case of shedding) groups. The control group was treated with glasses, red flash, grating, and visual stimulations, with each procedure conducted for 5min per time. Based on routine treatment, the acupuncture group underwent acupuncture of "regulating qi and unblocking meridians to bright eyes", Jingming (BL1), Cuanzhu (BL2), Guangming (GB37), Fengchi (GB20) acupoints were taken on both sides, with the needle kept for 30min each time. Both groups were treated once every other day, three times per week, for a total of 4wk. After the treatment, the overall curative effect of the two groups and the latency and amplitude changes of P100 wave of pattern visual-evoked potential were counted. At the same time, nine children with left eye amblyopia were randomly selected from the two groups and were scanned with rs-fMRI before and after treatment. The differences in the brain regions between the two groups were compared and analyzed with VMHC. RESULTS Chi-square test showed a notable difference in the total efficiency rate between the acupuncture (94.87%) and control groups (79.49%). Regarding the P100 wave latency and amplitude, the acupuncture group had significantly shorter latency and higher amplitude of P100 wave than the control group. Moreover, the VMHC values of the bilateral temporal lobe, superior temporal gyrus, and middle temporal gyrus were notably increased in the acupuncture group after treatment. CONCLUSION Acupuncture combined with conventional treatment can significantly improve the corrected visual acuity and optic nerve conduction in children with anisometropic amblyopia. Compared with the conventional treatment, the regulation of acupuncture on the functional activities of the relevant brain areas in the anterior cerebellum may be an effective acupuncture mechanism for anisometropic amblyopia.
Collapse
Affiliation(s)
- Jue Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| | - Jing Jia
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| | - Yan Sun
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou 730050, Gansu Province, China
| | - Chong-Bing Ma
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| | - Yu-Zhu Chen
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| | - An-Guo Liu
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| | - Xing-Ke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, Gansu Province, China
| |
Collapse
|
4
|
Wang Y, Wu Y, Luo L, Li F. Structural and functional alterations in the brains of patients with anisometropic and strabismic amblyopia: a systematic review of magnetic resonance imaging studies. Neural Regen Res 2023; 18:2348-2356. [PMID: 37282452 PMCID: PMC10360096 DOI: 10.4103/1673-5374.371349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/08/2023] Open
Abstract
Amblyopia is the most common cause of vision loss in children and can persist into adulthood in the absence of effective intervention. Previous clinical and neuroimaging studies have suggested that the neural mechanisms underlying strabismic amblyopia and anisometropic amblyopia may be different. Therefore, we performed a systematic review of magnetic resonance imaging studies investigating brain alterations in patients with these two subtypes of amblyopia; this study is registered with PROSPERO (registration ID: CRD42022349191). We searched three online databases (PubMed, EMBASE, and Web of Science) from inception to April 1, 2022; 39 studies with 633 patients (324 patients with anisometropic amblyopia and 309 patients with strabismic amblyopia) and 580 healthy controls met the inclusion criteria (e.g., case-control designed, peer-reviewed articles) and were included in this review. These studies highlighted that both strabismic amblyopia and anisometropic amblyopia patients showed reduced activation and distorted topological cortical activated maps in the striate and extrastriate cortices during task-based functional magnetic resonance imaging with spatial-frequency stimulus and retinotopic representations, respectively; these may have arisen from abnormal visual experiences. Compensations for amblyopia that are reflected in enhanced spontaneous brain function have been reported in the early visual cortices in the resting state, as well as reduced functional connectivity in the dorsal pathway and structural connections in the ventral pathway in both anisometropic amblyopia and strabismic amblyopia patients. The shared dysfunction of anisometropic amblyopia and strabismic amblyopia patients, relative to controls, is also characterized by reduced spontaneous brain activity in the oculomotor cortex, mainly involving the frontal and parietal eye fields and the cerebellum; this may underlie the neural mechanisms of fixation instability and anomalous saccades in amblyopia. With regards to specific alterations of the two forms of amblyopia, anisometropic amblyopia patients suffer more microstructural impairments in the precortical pathway than strabismic amblyopia patients, as reflected by diffusion tensor imaging, and more significant dysfunction and structural loss in the ventral pathway. Strabismic amblyopia patients experience more attenuation of activation in the extrastriate cortex than in the striate cortex when compared to anisometropic amblyopia patients. Finally, brain structural magnetic resonance imaging alterations tend to be lateralized in the adult anisometropic amblyopia patients, and the patterns of brain alterations are more limited in amblyopic adults than in children. In conclusion, magnetic resonance imaging studies provide important insights into the brain alterations underlying the pathophysiology of amblyopia and demonstrate common and specific alterations in anisometropic amblyopia and strabismic amblyopia patients; these alterations may improve our understanding of the neural mechanisms underlying amblyopia.
Collapse
Affiliation(s)
- Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Wu
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Lekai Luo
- Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Piñero DP, Maldonado-López MJ, Molina-Martin A, García-Sánchez N, Ramón ML, Rincón JL, Holgueras A, Arenillas JF, Planchuelo-Gómez Á, Leal-Vega L, Coco-Martín MB. Randomised placebo-controlled clinical trial evaluating the impact of a new visual rehabilitation program on neuroadaptation in patients implanted with trifocal intraocular lenses. Int Ophthalmol 2023; 43:4035-4053. [PMID: 37464228 PMCID: PMC10520183 DOI: 10.1007/s10792-023-02809-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE To evaluate the efficacy of a new visual training program for improving the visual function in patients implanted with trifocal intraocular lenses (IOLs). METHODS Randomised placebo-controlled clinical trial enrolling 60 subjects (age, 47-75 years) undergoing cataract surgery with implantation of trifocal diffractive IOL. Home-based active visual training was prescribed immediately after surgery to all of them (20 sessions, 30 min): 31 subjects using a serious game based on Gabor patches (study group) and 29 using a placebo software (placebo group). Visual acuity, contrast sensitivity (CS), and perception of visual disturbances (QoV questionnaire) were evaluated before and after training. Likewise, in a small subgroup, resting-state functional magnetic resonance imaging (rs-fMRI) analysis was performed. RESULTS No significant differences were found between groups in compliance time (p = 0.70). After training, only significant improvements in monocular uncorrected intermediate visual acuity were found in the study group (p ≤ 0.01), although differences between groups did not reach statistical significance (p ≥ 0.11). Likewise, significantly better binocular far CS values were found in the study group for the spatial frequencies of 6 (p = 0.01) and 12 cpd (p = 0.03). More visual symptoms of the QoV questionnaire experienced a significant change in the level of bothersomeness in the study group. Rs-fMRI revealed the presence significant changes reflecting higher functional connectivity after the training with the serious game. CONCLUSIONS A 3-week visual training program based on the use of Gabor patches after bilateral implantation of trifocal diffractive IOLs may be beneficial for optimising the visual function, with neural changes associated suggesting an acceleration of neuroadaptation. Trial registration ClinicalTrials.gov, NCT04985097. Registered 02 August 2021, https://clinicaltrials.gov/(NCT04985097 ).
Collapse
Affiliation(s)
- David P Piñero
- Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Crta San Vicente del Raspeig S/N, 03016, San Vicente del Raspeig, Alicante, Spain.
- Department of Ophthalmology, Vithas Medimar International Hospital, Alicante, Spain.
| | - Miguel J Maldonado-López
- Grupo de Cirugía Refractiva y Rehabilitación Visual, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Ainhoa Molina-Martin
- Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Crta San Vicente del Raspeig S/N, 03016, San Vicente del Raspeig, Alicante, Spain
| | | | - María L Ramón
- Department of Ophthalmology, Vithas Medimar International Hospital, Alicante, Spain
| | - José L Rincón
- Department of Ophthalmology, Vithas Medimar International Hospital, Alicante, Spain
| | - Alfredo Holgueras
- Grupo de Cirugía Refractiva y Rehabilitación Visual, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Juan F Arenillas
- Group of Applied Clinical Neurosciences and Advanced Data Analysis, Department of Medicine, Dermatology and Toxicology, University of Valladolid, Valladolid, Spain
- Stroke Unit and Stroke Program, Department of Neurology, University Clinical Hospital, University of Valladolid, Valladolid, Spain
| | | | - Luis Leal-Vega
- Grupo de Cirugía Refractiva y Rehabilitación Visual, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - María Begoña Coco-Martín
- Grupo de Cirugía Refractiva y Rehabilitación Visual, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| |
Collapse
|
6
|
Wang G, Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 2022; 261:1229-1246. [PMID: 36282454 DOI: 10.1007/s00417-022-05826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia's neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Dai P, Zhou X, Ou Y, Xiong T, Zhang J, Chen Z, Zou B, Wei X, Wu Y, Xiao M. Altered Effective Connectivity of Children and Young Adults With Unilateral Amblyopia: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:657576. [PMID: 34295218 PMCID: PMC8290343 DOI: 10.3389/fnins.2021.657576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
The altered functional connectivity (FC) in amblyopia has been investigated by many studies, but the specific causality of brain connectivity needs to be explored further to understand the brain activity of amblyopia. We investigated whether the effective connectivity (EC) of children and young adults with amblyopia was altered. The subjects included 16 children and young adults with left eye amblyopia and 17 healthy controls (HCs). The abnormalities between the left/right primary visual cortex (PVC) and the other brain regions were investigated in a voxel-wise manner using the Granger causality analysis (GCA). According to the EC results in the HCs and the distribution of visual pathways, 12 regions of interest (ROIs) were selected to construct an EC network. The alteration of the EC network of the children and young adults with amblyopia was analyzed. In the voxel-wise manner analysis, amblyopia showed significantly decreased EC between the left/right of the PVC and the left middle frontal gyrus/left inferior frontal gyrus compared with the HCs. In the EC network analysis, compared with the HCs, amblyopia showed significantly decreased EC from the left calcarine fissure, posterior cingulate gyrus, left lingual gyrus, right lingual gyrus, and right fusiform gyrus to the right calcarine fissure. Amblyopia also showed significantly decreased EC from the right inferior frontal gyrus and right lingual gyrus to the left superior temporal gyrus compared with the HCs in the EC network analysis. The results may indicate that amblyopia altered the visual feedforward and feedback pathway, and amblyopia may have a greater relevance with the feedback pathway than the feedforward pathway. Amblyopia may also correlate with the feedforward of the third visual pathway.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Jinlong Zhang
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Xin Wei
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Manyi Xiao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
8
|
Halicka J, Bittsansky M, Sivak S, Piñero DP, Ziak P. Virtual Reality Visual Training in an Adult Patient with Anisometropic Amblyopia: Visual and Functional Magnetic Resonance Outcomes. Vision (Basel) 2021; 5:vision5020022. [PMID: 34064788 PMCID: PMC8163189 DOI: 10.3390/vision5020022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
A case of an adult with anisometropic amblyopia who underwent a successful vision therapy program playing videogames in a virtual reality environment is described, reporting changes in conventional visual clinical data, as well as in brain activity. The patient was a 22 year old man on baseline examination that never previously wore correction for his anisometropia. After prescribing contact lens correction for the anisometropia and after 44 h of virtual reality-based vision therapy over a period of 1.5 years, the best corrected distance visual acuity (BCDVA) in the amblyopic eye improved from 0.05 to 0.5 (Sloan chart). One year after finishing the visual training, the BCDVA experienced a slight decrease to 0.4 (Sloan chart). Through the visual training, the patient gradually developed stereopsis. Likewise, changes were also detected after visual therapy on functional magnetic resonance imaging while the patient was viewing 2D and 3D stimuli. The preliminary results of this case show the potential of using virtual reality-based visual training as a treatment for adult amblyopia.
Collapse
Affiliation(s)
- Juraj Halicka
- Eye Clinic, Jessenius Faculty of Medicine, Commenius University in Bratislava, Kollárova 2, 036 59 Martin, Slovakia;
- UVEA Mediklinik, Zelená 3739/1, 036 01 Martin-Priekopa, Slovakia
| | - Michal Bittsansky
- Department of Biochemistry, Jessenius Faculty of Medicine, Commenius University in Bratislava, Mlynská dolina Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Stefan Sivak
- Neurology Clinic, Jessenius Faculty of Medicine, Commenius University in Bratislava, Kollárova 2, 036 59 Martin, Slovakia;
| | - David P. Piñero
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Crta San Vicente del Raspeig s/n, 03690 Alicante, Spain
- Correspondence: (D.P.P.); (P.Z.); Tel.: +34-965903500 (D.P.P.); +421-43401-2604 (P.Z.)
| | - Peter Ziak
- Eye Clinic, Jessenius Faculty of Medicine, Commenius University in Bratislava, Kollárova 2, 036 59 Martin, Slovakia;
- UVEA Mediklinik, Zelená 3739/1, 036 01 Martin-Priekopa, Slovakia
- Correspondence: (D.P.P.); (P.Z.); Tel.: +34-965903500 (D.P.P.); +421-43401-2604 (P.Z.)
| |
Collapse
|
9
|
Tao C, Wu Y, Gong L, Chen S, Mao Y, Chen Y, Zhou J, Huang PC. Abnormal Monocular and Dichoptic Temporal Synchrony in Adults with Amblyopia. Invest Ophthalmol Vis Sci 2020; 60:4858-4864. [PMID: 31747686 DOI: 10.1167/iovs.19-27893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate temporal synchrony within one eye and between both eyes in adults with amblyopia. Methods Eight adult amblyopes (range, 19.88-27.81 years old; median, 22.86 years old) and 12 age-matched adults with normal vision (range, 21.2-50.30 years old; median, 23.78 years old) participated in the experiment. We showed two pairs of Gaussian blobs flickering at 1 Hz as visual stimuli, one pair with the same temporal phase modulation (i.e., the reference) and another pair with a distinct temporal phase (i.e., the signal). We employed the constant stimuli method to measure the minimum degree of temporal phase (temporal synchrony threshold), at which participants were able to discriminate the signal pair under binocular, monocular, and dichoptic viewing configurations. Results The temporal synchrony threshold was different across the six configurations (P = 0.001). There was also an interaction between the configuration and the group (P = 0.004). The synchrony threshold was significantly higher in amblyopes than in controls under the configurations where two pairs of blobs were presented to the amblyopic eye (136.52 ± 50.19 vs. 97.08 ± 22.02 ms, P = 0.027) and where the paired blobs were presented to different eyes (163.15 ± 80.85 vs. 111.61 ± 22.46 ms, P = 0.049). The visual deficits in these two configurations were significantly correlated (r = 0.824, P = 0.012). Conclusions The threshold for detecting temporal asynchrony increased when the stimuli were presented only to the amblyopic eye and when they were dichoptically presented to the amblyopic and fellow eyes.
Collapse
Affiliation(s)
- Chunwen Tao
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yidong Wu
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ling Gong
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shijia Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Mao
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiya Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Pi-Chun Huang
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|