1
|
Dong M, Ming X, Xiang T, Feng N, Zhang M, Ye X, He Y, Zhou M, Wu Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: a comprehensive review. Food Funct 2024; 15:8973-8997. [PMID: 39189379 DOI: 10.1039/d4fo02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Quinones represent a class of crude organic compounds ubiquitously distributed in nature. Their distinctive quinone-type structure confers upon them unique properties and applications. Quinones demonstrate significant biological activities, including antioxidant, antimicrobial, and antitumor properties. Additionally, they demonstrate noteworthy physicochemical characteristics, including excellent dyeing properties and stability. Given their diverse qualities, quinones hold significant promise for applications in industrial manufacturing, healthcare, and food production, thus garnering considerable attention in recent years. While there is a growing body of research on quinones, the existing literature falls short of providing a comprehensive review encompassing recent advancements in this field along with established knowledge. This paper offers a comprehensive review of research progress for quinones, encompassing structural classification, source synthesis, extraction methods, properties, functions, and specific applications. It serves as a reference and theoretical foundation for the further development and utilization of quinones.
Collapse
Affiliation(s)
- Mingyu Dong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xiaozhi Ming
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Tianyu Xiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Mengyun Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xurui Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Yi He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
- Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang 310058, P. R. China
| |
Collapse
|
2
|
Seibold PS, Dörner S, Fricke J, Schäfer T, Beemelmanns C, Hoffmeister D. Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. Fungal Biol Biotechnol 2024; 11:4. [PMID: 38664850 PMCID: PMC11046786 DOI: 10.1186/s40694-024-00173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.
Collapse
Affiliation(s)
- Paula Sophie Seibold
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Sebastian Dörner
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Janis Fricke
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Tim Schäfer
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christine Beemelmanns
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Saarland University, 66123, Saarbrücken, Germany
| | - Dirk Hoffmeister
- Institute for Pharmacy, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany.
| |
Collapse
|
3
|
Schäfer T, Haun F, Gressler M, Spiteller P, Hoffmeister D. Parallel Evolution of Asco- and Basidiomycete O-Prenyltransferases. JOURNAL OF NATURAL PRODUCTS 2024; 87:576-582. [PMID: 38231181 DOI: 10.1021/acs.jnatprod.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prenyltransferases (PTs) are involved in the biosynthesis of a multitude of pharmaceutically and agriculturally important plant, bacterial, and fungal compounds. Although numerous prenylated compounds have been isolated from Basidiomycota (mushroom-forming fungi), knowledge of the PTs catalyzing the transfer reactions in this group of fungi is scarce. Here, we report the biochemical characterization of an O- and C-prenylating dimethylallyltryptophan synthase (DMATS)-like enzyme LpTyrPT from the scurfy deceiver Laccaria proxima. This PT transfers dimethylallyl moieties to l-tyrosine at the para-O position and to l-tryptophan at atom C-7 and represents the first basidiomycete l-tyrosine PT described so far. Phylogenetic analysis of PTs in fungi revealed that basidiomycete l-tyrosine PTs have evolved independently from their ascomycete counterparts and might represent the evolutionary origin of PTs acting on phenolic compounds in secondary metabolism.
Collapse
Affiliation(s)
- Tim Schäfer
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Fabian Haun
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Peter Spiteller
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
4
|
Ji L, Tan L, Shang Z, Li W, Mo X, Yang S, Yu G. Discovery of New Antimicrobial Metabolites in the Coculture of Medicinal Mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5247-5257. [PMID: 38425052 DOI: 10.1021/acs.jafc.3c09476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.
Collapse
Affiliation(s)
- Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Zhaomeng Shang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| |
Collapse
|