1
|
Tong Z, Xu M, Zhang Q, Lin F, Fang D, Chen X, Zhu T, Liu Y, Xu H, Xiao B. Construction of a high-density genetic map and dissection of genetic architecture of six agronomic traits in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1126529. [PMID: 36875609 PMCID: PMC9975568 DOI: 10.3389/fpls.2023.1126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an economic crop and a model organism for studies on plant biology and genetics. A population of 271 recombinant inbred lines (RIL) derived from K326 and Y3, two elite flue-cured tobacco parents, has been constructed to investigate the genetic basis of agronomic traits in tobacco. Six agronomic traits including natural plant height (nPH), natural leaf number (nLN), stem girth (SG), inter-node length (IL), length of the largest leaf (LL) and width of the largest leaf (LW) were measured in seven environments, spanning the period between 2018 and 2021. We firstly developed an integrated SNP-indel-SSR linkage map with 43,301 SNPs, 2,086 indels and 937 SSRs, which contained 7,107 bin markers mapped on 24 LGs and covered 3334.88 cM with an average genetic distance of 0.469cM. Based on this high-density genetic map, a total of 70 novel QTLs were detected for six agronomic traits by a full QTL model using the software QTLNetwork, of which 32 QTLs showed significant additive effects, 18 QTLs showed significant additive-by-environment interaction effects, 17 pairs showed significant additive-by-additive epistatic effects and 13 pairs showed significant epistasis-by-environment interaction effects. In addition to additive effect as a major contributor to genetic variation, both epistasis effects and genotype-by-environment interaction effects played an important role in explaining phenotypic variation for each trait. In particular, qnLN6-1 was detected with considerably large main effect and high heritability ( h a 2 =34.80%). Finally, four genes including Nt16g00284.1, Nt16g00767.1, Nt16g00853.1, Nt16g00877.1 were predicted as pleiotropic candidate genes for five traits.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Manling Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qixin Zhang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Lin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Tianneng Zhu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
Slonecki TJ, Rutter WB, Olukolu BA, Yencho GC, Jackson DM, Wadl PA. Genetic diversity, population structure, and selection of breeder germplasm subsets from the USDA sweetpotato ( Ipomoea batatas) collection. FRONTIERS IN PLANT SCIENCE 2023; 13:1022555. [PMID: 36816486 PMCID: PMC9932972 DOI: 10.3389/fpls.2022.1022555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Sweetpotato (Ipomoea batatas) is the sixth most important food crop and plays a critical role in maintaining food security worldwide. Support for sweetpotato improvement research in breeding and genetics programs, and maintenance of sweetpotato germplasm collections is essential for preserving food security for future generations. Germplasm collections seek to preserve phenotypic and genotypic diversity through accession characterization. However, due to its genetic complexity, high heterogeneity, polyploid genome, phenotypic plasticity, and high flower production variability, sweetpotato genetic characterization is challenging. Here, we characterize the genetic diversity and population structure of 604 accessions from the sweetpotato germplasm collection maintained by the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Plant Genetic Resources Conservation Unit (PGRCU) in Griffin, Georgia, United States. Using the genotyping-by-sequencing platform (GBSpoly) and bioinformatic pipelines (ngsComposer and GBSapp), a total of 102,870 polymorphic SNPs with hexaploid dosage calls were identified from the 604 accessions. Discriminant analysis of principal components (DAPC) and Bayesian clustering identified six unique genetic groupings across seven broad geographic regions. Genetic diversity analyses using the hexaploid data set revealed ample genetic diversity among the analyzed collection in concordance with previous analyses. Following population structure and diversity analyses, breeder germplasm subsets of 24, 48, 96, and 384 accessions were established using K-means clustering with manual selection to maintain phenotypic and genotypic diversity. The genetic characterization of the PGRCU sweetpotato germplasm collection and breeder germplasm subsets developed in this study provide the foundation for future association studies and serve as precursors toward phenotyping studies aimed at linking genotype with phenotype.
Collapse
Affiliation(s)
- Tyler J. Slonecki
- United States Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC, United States
| | - William B. Rutter
- United States Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC, United States
| | - Bode A. Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - G. Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - D. Michael Jackson
- United States Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC, United States
| | - Phillip A. Wadl
- United States Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC, United States
| |
Collapse
|
3
|
Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC Genomics 2020; 21:470. [PMID: 32640982 PMCID: PMC7346634 DOI: 10.1186/s12864-020-06814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.
Collapse
|
4
|
Liu P, Luo J, Zheng Q, Chen Q, Zhai N, Xu S, Xu Y, Jin L, Xu G, Lu X, Xu G, Wang G, Shao J, Xu H, Cao P, Zhou H, Wang X. Integrating transcriptome and metabolome reveals molecular networks involved in genetic and environmental variation in tobacco. DNA Res 2020; 27:dsaa006. [PMID: 32324848 PMCID: PMC7320822 DOI: 10.1093/dnares/dsaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Tobacco (Nicotiana tabacum) is one of the most widely cultivated commercial non-food crops with significant social and economic impacts. Here we profiled transcriptome and metabolome from 54 tobacco samples (2-3 replicates; n = 151 in total) collected from three varieties (i.e. genetic factor), three locations (i.e. environmental factor), and six developmental stages (i.e. developmental process). We identified 3,405 differentially expressed (DE) genes (DEGs) and 371 DE metabolites, respectively. We used quantitative real-time PCR to validate 20 DEGs, and confirmed 18/20 (90%) DEGs between three locations and 16/20 (80%) with the same trend across developmental stages. We then constructed nine co-expression gene modules and four co-expression metabolite modules , and defined seven de novo regulatory networks, including nicotine- and carotenoid-related regulatory networks. A novel two-way Pearson correlation approach was further proposed to integrate co-expression gene and metabolite modules to identify joint gene-metabolite relations. Finally, we further integrated DE and network results to prioritize genes by its functional importance and identified a top-ranked novel gene, LOC107773232, as a potential regulator involved in the carotenoid metabolism pathway. Thus, the results and systems-biology approaches provide a new avenue to understand the molecular mechanisms underlying complex genetic and environmental perturbations in tobacco.
Collapse
Affiliation(s)
- Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jie Luo
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shengchun Xu
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gangjun Wang
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianfeng Shao
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hai‐Ming Xu
- Institute of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| |
Collapse
|
5
|
Tong Z, Zhou J, Xiu Z, Jiao F, Hu Y, Zheng F, Chen X, Li Y, Fang D, Li S, Wu X, Zeng J, Zhao S, Jian J, Xiao B. Construction of a high-density genetic map with whole genome sequencing in Nicotiana tabacum L. Genomics 2020; 112:2028-2033. [PMID: 31760041 DOI: 10.1016/j.ygeno.2019.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Tobacco (Nicotiana tabacum L.) is an essential commercial crop and an ideal model plant for biological mechanism studies. As an allopolyploid species, tobacco harbors a massive and complex genome, which makes the application of molecular markers complicated and challenging. In our study, we performed whole-genome sequencing of an intraspecific recombinant inbred line (RIL) population, a F1 generation and their parents. With the Nicotiana tabacum (K326 cultivar) genome as reference, a total of 45,081 markers were characterized to construct the genetic map, which spanned a genetic distance of 3486.78 cM. Evaluation of a two-dimensional heat map proved the high quality of the genetic map. We utilized these markers to anchor scaffolds and analyzed the ancestral genome origin of linkage groups (LGs). Furthermore, such a high-density genetic map will be applied for quantitative trait locus (QTL) detection, gene localization, genome-wide association studies (GWAS), and marker-assisted breeding in tobacco.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Juhong Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Fengya Zheng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Yanli Li
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Shiming Li
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Xingfu Wu
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Jianmin Zeng
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Shancen Zhao
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| |
Collapse
|
6
|
Kakar KU, Nawaz Z, Cui Z, Ahemd N, Ren X. Molecular breeding approaches for production of disease-resilient commercially important tobacco. Brief Funct Genomics 2020; 19:10-25. [PMID: 31942928 DOI: 10.1093/bfgp/elz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Tobacco is one of the most widely cultivated nonfood cash crops, a source of income, model organism for plant molecular research, a natural pesticide and of pharmaceutical importance. First domesticated in South Americas, the modern-day tobacco (Nicotiana tabacum) is now cultivated in more than 125 countries to generate revenues worth billions of dollars each year. However, the production of this crop is highly threatened by the global presence of devastating infectious agents, which cause huge fiscal loss. These threats have been battled through breeding for acquiring disease resilience in tobacco plants, first, via conventional and now with the use of modern molecular breeding approaches. For efficacy and precision, the characterization of the genetic components underlying disease resistance is the key tool in tobacco for resistance breeding programs. The past few decades have witnessed significant progress in resilience breeding through advanced molecular techniques. The current review discusses history of tobacco breeding since its time of origin till date, highlighting the most widely used techniques and recent advances in molecular research and strategies for resistance breeding. In addition, we narrate the budding possibilities for the future. This review will provide a comprehensive and valuable information for the tobacco growers and researchers to deal with the destructive infectious diseases.
Collapse
|
7
|
Gao X, Wu X, Liu G, Zhang Z, Chao J, Li Z, Guo Y, Sun Y. Characterization and Mapping of a Novel Premature Leaf Senescence Mutant in Common Tobacco ( Nicotiana tabacum L.). PLANTS 2019; 8:plants8100415. [PMID: 31618834 PMCID: PMC6843228 DOI: 10.3390/plants8100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022]
Abstract
As the last stage of plant development, leaf senescence has a great impact on plant’s life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.
Collapse
Affiliation(s)
- Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Plant Genetic, Gembloux Agro-Bio Tech, University of Liege, Gembloux B-5030, Belgium.
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
8
|
Wang D, Wang S, Chao J, Wu X, Sun Y, Li F, Lv J, Gao X, Liu G, Wang Y. Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.). PLANTA 2017; 246:149-163. [PMID: 28401357 DOI: 10.1007/s00425-017-2690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION A novel tobacco mutant library was constructed, screened, and characterized as a crucial genetic resource for functional genomics and applied research. A comprehensive mutant library is a fundamental resource for investigating gene functions, especially after the completion of genome sequencing. A new tobacco mutant population induced by ethyl methane sulfonate mutagenesis was developed for functional genomics applications. We isolated 1607 mutant lines and 8610 mutant plants with altered morphological phenotypes from 5513 independent M2 families that consisted of 69,531 M2 plants. The 2196 mutations of abnormal phenotypes in the M2 putative mutants were classified into four groups with 17 major categories and 51 subcategories. More than 60% of the abnormal phenotypes observed fell within the five major categories including plant height, leaf shape, leaf surface, leaf color, and flowering time. The 465 M2 mutants exhibited multiple phenotypes, and 1054 of the 2196 mutations were pleiotropic. Verification of the phenotypes in advanced generations indicated that 70.63% of the M3 lines, 84.87% of the M4 lines, and 95.75% of the M5 lines could transmit original mutant phenotypes of the corresponding M2, M3, and M4 mutant plants. Along with the increased generation of mutants, the ratios of lines inheriting OMPs increased and lines with emerging novel mutant phenotypes decreased. Genetic analyses of 18 stably heritable mutants showed that two mutants were double recessive, five were monogenic recessive, eight presented monogenic dominant inheritance, and three presented semi-dominant inheritance. The pleiotropy pattern, saturability evaluation, research prospects of genome, and phenome of the mutant populations were also discussed. Simultaneously, this novel mutant library provided a fundamental resource for investigating gene functions in tobacco.
Collapse
Affiliation(s)
- Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
9
|
Huang L, Yang Y, Zhang F, Cao J. A genome-wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage. Sci Rep 2017; 7:46305. [PMID: 28418033 PMCID: PMC5394690 DOI: 10.1038/srep46305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/14/2017] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to construct a high-resolution genetic map for the dissection of complex morphological and agronomic traits in Chinese cabbage (Brassica rapa L. syn. B. campestris). Chinese cabbage, an economically important vegetable, is a good model plant for studies on the evolution of morphologic variation. Herein, two high-generation inbred Chinese cabbage lines, 'Huangxiaoza' and 'Bqq094-11', were crossed. Then restriction-site-associated DNA sequencing (RAD-seq) was performed on the parents and 120 F2 individuals. A genetic map containing 711 bins representing 3985 single nucleotide polymorphism (SNP) markers was constructed. By using WinQTL with composite interval mapping (CIM) and mixed-model based composite interval mapping (MCIM) analysis via QTLNetwork, quantitative trait loci (QTL) linked to 16 genetic traits related to plant size, color and leaf characteristics were mapped to 10 linkage groups. The high density genetic map and QTL identified for morphological and agronomic traits lay the groundwork for functional gene mapping, map-based cloning and marker-assisted selection (MAS) in Chinese cabbage.
Collapse
Affiliation(s)
- Li Huang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Yafei Yang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Fang Zhang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
10
|
Monden Y, Tahara M. Genetic linkage analysis using DNA markers in sweetpotato. BREEDING SCIENCE 2017; 67:41-51. [PMID: 28465667 PMCID: PMC5407921 DOI: 10.1270/jsbbs.16142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/03/2016] [Indexed: 05/23/2023]
Abstract
Sweetpotato is one of the most important food crop species in the world, with more than 104,000,000 tons produced each year, and the breeding of superior cultivars with agronomically important traits, such as improved disease resistance, yield, and nutrient richness, is necessary, especially in developing countries. However, as a result of the crop's complex genomic architecture, which results from its hexaploidy (2n = 6× = 90), high heterozygosity, huge genome, and outcrossing nature, the analysis of genetic linkage in sweetpotato has been challenging. In addition, the lack of whole genome sequences or gene annotations for cultivated hexaploids has interrupted the validation of mapped QTL regions and gene cloning. In spite of these technical difficulties, linkage map construction and QTL mapping analysis have been reported. This review summarizes the results of these linkage analyses, which used SSR, AFLP, and retrotransposon-based molecular markers, and describes future directions for the genetic analysis and marker-assisted breeding of this important but genetically complex crop species.
Collapse
Affiliation(s)
- Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University,
1-1-1 Tsushimanaka Kitaku, Okayama, Okayama 700-8530,
Japan
| | - Makoto Tahara
- Graduate School of Environmental and Life Science, Okayama University,
1-1-1 Tsushimanaka Kitaku, Okayama, Okayama 700-8530,
Japan
| |
Collapse
|
11
|
Ye F, Yu XD, Wang Q, Zhao P. Identification of SNPs in a nonmodel macrofungus ( Lepista nuda, Basidiomycota) through RAD sequencing. SPRINGERPLUS 2016; 5:1793. [PMID: 27795935 PMCID: PMC5063826 DOI: 10.1186/s40064-016-3459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022]
Abstract
Lepista nuda is a wild edible fungus that is valued for its odor and taste. Recent studies identified intraspecific morphological and genetic differences in L. nuda. Although single-nucleotide polymorphisms (SNPs) are useful for revealing intraspecific differences, the traditional methods used for investigating SNPs are time consuming and expensive, and they only locate a limited number of SNPs. This study used a “restriction-site associated DNA” (RAD) method combined with high throughput sequencing to efficiently identify a large number of SNPs in two samples of L. nuda. A total of 7 and 9 billion bp of raw data were obtained from the two collections. A total of 712 SNPs were found. These SNPs will be useful for the further analysis of the genetic variation within L. nuda. The study also confirms that the RAD method can be used to identify SNPs in a nonmodel macrofungus for which a reference genome is unavailable.
Collapse
Affiliation(s)
- Fei Ye
- College of Jilin Agricultural Science and Technology, Jilin, People's Republic of China
| | - Xiao-Dan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866 Liaoning People's Republic of China
| | - Qing Wang
- Provincial Key Laboratory of Forest Protection, Liaoning Academy of Forestry, Shenyang, Liaoning People's Republic of China
| | - Peng Zhao
- Key Laboratory of Shandong Province for Edible Mushroom Technology, Institute of Mycological Science and Technology, Ludong University, Yantai, Shandong People's Republic of China
| |
Collapse
|