1
|
Guzman J, Hart M, Weigelt K, Neumann A, Aigner A, Andolfi C, Handle F, Rheinheimer S, Fischer U, Immel UD, Lieb V, Meese E, Culig Z, Wullich B, Taubert H, Wach S. The MicroRNA miR-454 and the mediator complex component MED12 are regulators of the androgen receptor pathway in prostate cancer. Sci Rep 2025; 15:10272. [PMID: 40133664 PMCID: PMC11937531 DOI: 10.1038/s41598-025-95250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Prostate cancer that is resistant to anti-androgen treatment, such as enzalutamide, represents a therapeutic challenge. To study their molecular and functional features, the enzalutamide-resistant PCa cell lines LNCaP Abl EnzR and DuCaP EnzR constitute valuable in vitro models. In this work, we explored two different strategies for reducing AR/AR-V7/c-Myc. MED12 knockdown decreased the protein expression of AR, AR-V7 and c-Myc. Similarly, we identified AR and AR-V7 as targets of miR-454-3p. Concomitantly, the transfection of synthetic miR-454-3p reduced the protein expression of AR in both EnzR cell lines and that of c-Myc and AR-V7 in the DuCaP EnzR cell line without affecting MED12. Despite these similar molecular effects, differences were observed at the cellular level, with siMED12, but not miR-454, reducing cell viability, and no additive effects upon double treatment were observed. Taken together, the results of our study suggest MED12 as a potential target for future PCa treatment in conjunction with enzalutamide resistance. Furthermore, miR-454-3p, which directly targets AR and AR-V7 and indirectly influences c-Myc protein expression, reveals new molecular mechanisms in PCa biology.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Martin Hart
- Center of Human and Molecular Biology (ZHMB), Institute of Human Genetics, Saarland University (USAAR), 66421, Homburg, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Angela Neumann
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Chiara Andolfi
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology & Molecular Pathology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University (USAAR), 66421, Homburg, Germany
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University (USAAR), 66421, Homburg, Germany
| | - Uta D Immel
- Institute of Legal Medicine, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Verena Lieb
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University (USAAR), 66421, Homburg, Germany
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.
| | - Sven Wach
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| |
Collapse
|
2
|
Tofolo MV, Berti FCB, Nunes-Souza E, Ruthes MO, Berti LF, Fonseca AS, Rosolen D, Cavalli LR. Non-coding RNAs as modulators of radioresponse in triple-negative breast cancer: a systematic review. J Biomed Sci 2024; 31:93. [PMID: 39354523 PMCID: PMC11445946 DOI: 10.1186/s12929-024-01081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
Collapse
Affiliation(s)
- Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Fernanda Costa Brandão Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Mayara Oliveira Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, 81280-340, Brazil
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil.
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Washington, DC, 20007, USA.
| |
Collapse
|
3
|
Wang W, Zhang Y, Huang X, Li D, Lin Q, Zhuang H, Li H. The role of the miR-30a-5p/BCL2L11 pathway in rosmarinic acid-induced apoptosis in MDA-MB-231-derived breast cancer stem-like cells. Front Pharmacol 2024; 15:1445034. [PMID: 39239646 PMCID: PMC11375422 DOI: 10.3389/fphar.2024.1445034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Background Rosmarinic acid (RA), a natural phenolic acid, exhibits promising anti-cancer properties. The abnormal expression of microRNA (miRNA) regulates the gene expression and plays a role as an oncogenic or tumor suppressor in TNBC. However, the biological role of RA in miR-30a-5p on BCL2L11 during MDA-MB-231 induced breast cancer stem-like cells (BCSCs) progression and its regulatory mechanism have not been elucidated. Objective To investigate whether RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and promoted apoptosis in BCSCs. Materials and Methods We assessed the migration, colony formation, proliferation, cell cycle, and apoptosis of BCSCs after RA treatment using the wound-healing assay, colony formation assay, CCK-8 assay, and flow cytometry, respectively. The expression of mRNA and protein levels of BCL-2, Bax, BCL2L11, and P53 genes in BCSCs after RA treatment was obtained by real-time polymerase chain reaction and Western blot. Differential miRNA expression in BCSCs was analyzed by high-throughput sequencing. Targetscan was utilized to predict the targets of miR-30a-5p. The dual luciferase reporter system was used for validation of the miR-30a-5p target. Results Wound-healing assay, colony formation assay, CCK-8 assay, and cell cycle assay results showed that RA inhibited migration, colony formation and viability of BCSCs, and cell cycle arrest in the G0-G1 phase. At the highest dose of RA, we noticed cell atrophy, while the arrest rate at 100 μg/mL RA surpassed that at 200 μg/mL RA. Apoptotic cells appeared early (Membrane Associated Protein V FITC+, PI-) or late (Membrane Associated Protein V FITC+, PI+) upon administration of 200 μg/mL RA, Using high-throughput sequencing to compare the differences in miRNA expression, we detected downregulation of miR-30a-5p expression, and the results of dual luciferase reporter gene analysis indicated that BCL2L11 was a direct target of miR-30a-5p. Conclusion RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and enhanced apoptosis in BCSCs.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Yuefen Zhang
- Science and Technology Service Center, Fujian Health College, Fuzhou, Fujian, China
| | - Xiaomin Huang
- School of Pharmacy, Fujian Health College, Fuzhou, Fujian, China
| | - Dan Li
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Qi Lin
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Hailin Zhuang
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Hong Li
- School of Public Health and Health Management, Fujian Health College, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Faridová AT, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024; 103:112-127. [PMID: 39134012 PMCID: PMC11793102 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Wu XJ, Xie Y, Gu XX, Zhu HY, Huang LX. LncRNA XIST promotes mitochondrial dysfunction of hepatocytes to aggravate hepatic fibrogenesis via miR-539-3p/ADAMTS5 axis. Mol Cell Biochem 2023; 478:291-303. [PMID: 35794289 DOI: 10.1007/s11010-022-04506-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/15/2022] [Indexed: 02/02/2023]
Abstract
A previous study indicated that long non-coding RNA X-inactive-specific transcript (XIST) promoted ethanol-induced HSCs autophagy and activation. Considering the critical role of HSC activation in hepatic fibrosis, the aim of the present study was to reveal the exact role of XIST in liver fibrosis and its underlying mechanism. The expression of XIST in the liver from CCL4-induced mice and control mice as well as human fibrotic liver tissue and healthy liver tissue was examined. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potential (MMP), and mitochondrial morphology were measured to assess the mitochondrial damage. The relationship between XIST and miR-539-3p as well as between miR-539-3p and ADAMTS5 was verified by a dual-luciferase reporter assay. The expression levels of HSCs activation markers were examined by Western blot. The results showed that the XIST was upregulated in fibrotic liver tissue, and overexpression of XIST induced mitochondrial dysfunction in hepatocytes. miR-539-3p directly targeted XIST, and ADAMTS5 mRNA was a downstream target of miR-539-3p. Knockdown of miR-539-3p led to an increased mitochondrial damage in hepatocytes in terms of reduced mitochondrial length, decreased MMP, and increased ROS production. However, the depletion of ADAMTS5 reversed the regulatory effect of XIST on mitochondrial damage in hepatocytes and the activation of HSCs. Our study revealed the critical role of the XIST/miR-539-3p/ADAMTS5 axis in regulating mitochondrial damage in hepatocytes and the activation of HSCs. This study may provide a potential therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiong-Jian Wu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Yuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiao-Xiang Gu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Hai-Yan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Li-Xing Huang
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| |
Collapse
|
7
|
May JM, Shankavaram U, Bylicky MA, Chopra S, Scott K, Martello S, Thrall K, Axtelle J, Menon N, Coleman CN, Aryankalayil MJ. Serum RNA biomarkers for predicting survival in non-human primates following thoracic radiation. Sci Rep 2022; 12:12333. [PMID: 35853961 PMCID: PMC9296457 DOI: 10.1038/s41598-022-16316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.7 Gy with dose rate 600 cGy/min. Serum was collected up to 270 days after irradiation and sequenced to determine immediate and delayed effects on miRNA expression. Elastic net based GLM methods were used to develop models that predicted the dose vs. controls at 81% accuracy at Day 15. A three-group model at Day 9 achieved 71% accuracy in determining if an animal would die in less than 90 days, between 90 and 269 days, or survive the length of the study. At Day 21, we achieved 100% accuracy in determining whether an animal would later develop pleural effusion. These results demonstrate the potential ability of miRNAs to determine thorax partial-body irradiation dose and forecast survival or complications early following whole thorax irradiation in large animal models. Future experiments incorporating additional doses and independent animal cohorts are warranted to validate these results. Development of a serum miRNA assay will facilitate the administration of medical countermeasures to increase survival and limit normal tissue damage following a mass exposure.
Collapse
Affiliation(s)
- Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karla Thrall
- Altasciences Preclinical Seattle LLC, Everett, WA, USA
| | | | | | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Aarthy R, Rao AKDM, Patel K, Sridevi V, Rajkumar T, Gowda H, Mani S. Alteration of miR-362-5p and miR-454-3p expression elicits diverse responses in breast cancer cell lines. Mol Biol Rep 2021; 49:821-826. [PMID: 34727290 DOI: 10.1007/s11033-021-06873-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The heterogeneity of breast tumors presents a challenge in disease management, necessitating an understanding of the molecular mechanisms driving breast tumorigenesis. Aberrant expression of microRNAs is known to promote tumor growth and progression. Our previous RNA-sequencing dataset revealed the upregulation of miR-362-5p and miR-454-3p in breast tumors. We investigated potential role of miR-362-5p and miR-454-3p in breast cancer using MDAMB231 and MCF7 cell lines. METHODS AND RESULTS The expression of miR-362-5p and miR-454-3p were altered in MCF7 and MDAMB231 using mimics and inhibitors. The effect on cell viability, cell cycle progression and migration was assessed using Alamar blue assay, flow cytometry and wound healing assay. Further, the expression of potential target genes were measured using real-time PCR. Our results indicated that an increased expression of miR-362-5p promoted cell growth and survival in MCF7, but decreased cell migration. In contrast, miR-362-5p overexpression reduced cancer cell growth, survival and migration in MDAMB231. Overexpression of miR-454-3p was oncogenic in both cell lines but suppressed migration in the aggressive cell line MDAMB231. CONCLUSION Two microRNAs, miR-362-5p and miR-454-3p, were evaluated for functional activity in breast cancer cell lines and they showed increased proliferative signals and tumorigenic properties.
Collapse
Affiliation(s)
- Raghu Aarthy
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | | | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 691001, India
| | - Velusami Sridevi
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 691001, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India.
| |
Collapse
|
9
|
Taefehshokr S, Taefehshokr N, Derakhshani A, Baghbanzadeh A, Astamal RV, Safaei S, Abbasi S, Hajazimian S, Maroufi NF, Isazadeh A, Hajiasgharzadeh K, Baradaran B. The regulatory role of pivotal microRNAs in the AKT signaling pathway in breast cancer. Curr Mol Med 2021; 22:263-273. [PMID: 34238182 DOI: 10.2174/1566524021666210708095051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women, and it remains the main challenge despite improved treatments. MicroRNAs (miRNAs) are a small non-coding family of RNAs that play an indispensable role in regulating major physiological processes, including differentiation, proliferation, invasion, migration, cell cycle regulation, stem cell maintenance, apoptosis, and organ development. The dysregulation of these tiny molecules is associated with various human malignancies. More than 50% of these non-coding RNA sequences estimated have been placed on genomic regions or fragile sites linked to cancer. Following the discovery of the first signatures of specific miRNA in breast cancer, numerous researches focused on involving these tiny RNAs in breast cancer physiopathology as a new therapeutic approach or as reliable prognostic biomarkers. In the current review, we focus on recent findings related to the involvement of miRNAs in breast cancer via the AKT signaling pathway and the related clinical implications.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, United Kingdom
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samane Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Wu Y, Zhu B, Yan Y, Bai S, Kang H, Zhang J, Ma W, Gao Y, Hui B, Li R, Zhang X, Ren J. Long non-coding RNA SNHG1 stimulates ovarian cancer progression by modulating expression of miR-454 and ZEB1. Mol Oncol 2021; 15:1584-1596. [PMID: 33641229 PMCID: PMC8096788 DOI: 10.1002/1878-0261.12932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is highly prevalent and is associated with high mortality rates due to metastasis and relapse. In this study, we assessed the role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in OC to gain further insight into mechanisms that contribute to its aggressiveness. We analyzed the correlation between SNHG1, miR-454 and zinc finger E-box-binding homeobox 1 (ZEB1) using a dual-luciferase reporter assay. Alterations in cell metastasis and invasiveness were observed using wound-healing and Transwell invasion assays, respectively. Tumor xenografts allowed us to monitor liver metastasis of mice injected with A2780 cells. We found that SNHG1 is overexpressed in OC. Downregulation of SNHG1 promoted miR-454 expression and reduced ZEB1 levels. In addition, knockdown of SNHG1, also reduced the aggressiveness of A2780 and SK-OV3 cells. Furthermore, SNHG1 downregulation by siRNA hindered cell migration and invasion; however, this effect was reversed by co-transfection of miR-454 into A2780 and SK-OV3 cells. Moreover, SNHG1 increased ZEB1 expression by downregulating miR-454 and activated Akt signaling, thereby promoting epithelial-mesenchymal transition and enhancing the invasiveness of OC cells. Tumor xenograft analyses confirmed that SNHG1 affects OC proliferation and metastasis in vivo. In summary, our data demonstrate that SNHG1 plays crucial roles in tumor progression and may be a useful maker for OC prognosis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- Zinc Finger E-box-Binding Homeobox 1/genetics
Collapse
Affiliation(s)
- YinYing Wu
- Department of Chemotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Bo Zhu
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Yanli Yan
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Shuheng Bai
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Haojing Kang
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | | | - Wen Ma
- Medical SchoolXi’an Jiaotong UniversityChina
| | - Ying Gao
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Beina Hui
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Rong Li
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Xiaozhi Zhang
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| | - Juan Ren
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityChina
| |
Collapse
|
11
|
Construction of a Potential Breast Cancer-Related miRNA-mRNA Regulatory Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6149174. [PMID: 33204705 PMCID: PMC7657683 DOI: 10.1155/2020/6149174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Breast cancer is a malignant tumor that occurs in the epithelial tissue of the breast gland and has become the most common malignancy in women. The regulation of the expression of related genes by microRNA (miRNA) plays an important role in breast cancer. We constructed a comprehensive breast cancer-miRNA-gene interaction map. Methods Three miRNA microarray datasets (GSE26659, GSE45666, and GSE58210) were obtained from the GEO database. Then, the R software “LIMMA” package was used to identify differential expression analysis. Potential transcription factors and target genes of screened differentially expressed miRNAs (DE-miRNAs) were predicted. The BRCA GE-mRNA datasets (GSE109169 and GSE139038) were downloaded from the GEO database for identifying differentially expressed genes (DE-genes). Next, GO annotation and KEGG pathway enrichment analysis were conducted. A PPI network was then established, and hub genes were identified via Cytoscape software. The expression and prognostic roles of hub genes were further evaluated. Results We found 6 upregulated differentially expressed- (DE-) miRNAs and 18 downregulated DE-miRNAs by analyzing 3 Gene Expression Omnibus databases, and we predicted the upstream transcription factors and downstream target genes for these DE-miRNAs. Then, we used the GEO database to perform differential analysis on breast cancer mRNA and obtained differentially expressed mRNA. We found 10 hub genes of upregulated DE-miRNAs and 10 hub genes of downregulated DE-miRNAs through interaction analysis. Conclusions In this study, we have performed an integrated bioinformatics analysis to construct a more comprehensive BRCA-miRNA-gene network and provide new targets and research directions for the treatment and prognosis of BRCA.
Collapse
|
12
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
13
|
Five miRNAs-mediated PIEZO2 downregulation, accompanied with activation of Hedgehog signaling pathway, predicts poor prognosis of breast cancer. Aging (Albany NY) 2020; 11:2628-2652. [PMID: 31058608 PMCID: PMC6535055 DOI: 10.18632/aging.101934] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Roles of Piezo-type mechanosensitive ion channel component 2 (PIEZO2) in cancer remain largely unknown. Herein, we explored PIEZO2 expression, prognosis and underlying mechanisms in cancer. Breast was selected as the candidate as its relatively higher expression level of PIEZO2 than other human tissues. Next, we identified a decreased expression of PIEZO2 in breast cancer compared with normal controls, and found that PIEZO2 expression positively correlated with estrogen receptor (ER) and progesterone receptor (PR) status but negatively correlated with human epidermal growth factor receptor 2 (HER2) status, Nottingham Prognostic Index (NPI) score, Scarff-Bloom-Richardson (SBR) grade, basal-like and triple-negative status. Subsequent analysis revealed that high expression of PIEZO2 had a favorable prognosis in breast cancer. 182 miRNAs were predicted to target PIEZO2. Among these miRNAs, five miRNAs (miR-130b-3p, miR-196a-5p, miR-301a-3p, miR-421 and miR-454-3p) possess the greatest potential in targeting PIEZO2. 109 co-expressed genes of PIEZO2 were identified. Pathway enrichment analysis showed that these genes were enriched in Hedgehog signaling pathway, including Cell adhesion molecule-related/downregulated by oncogenes (CDON). CDON expression was decreased in breast cancer and downregulation of CDON indicated a poor prognosis. Altogether, these findings suggest that decreased expression of PIEZO2 may be utilized as a prognostic biomarker of breast cancer.
Collapse
|
14
|
An Y, Zhang J, Cheng X, Li B, Tian Y, Zhang X, Zhao F. miR-454 suppresses the proliferation and invasion of ovarian cancer by targeting E2F6. Cancer Cell Int 2020; 20:237. [PMID: 32536825 PMCID: PMC7291497 DOI: 10.1186/s12935-020-01300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yunhe An
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Xiaoyan Cheng
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Baoming Li
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Yanjie Tian
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Xiaoli Zhang
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Fangqi Zhao
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| |
Collapse
|
15
|
Guo JY, Wang YK, Lv B, Jin H. miR-454 performs tumor-promoting effects in oral squamous cell carcinoma via reducing NR3C2. J Oral Pathol Med 2020; 49:286-293. [PMID: 32170966 DOI: 10.1111/jop.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aberrant miRNAs expression regulates the occurrence and progression of a variety of cancers, including oral squamous cell carcinoma (OSCC). This study aims to illustrate the potential effects of miR-454/nuclear receptor subfamily 3 group C member 2 (NR3C2) on the biological behaviors of OSCC cells. METHODS GEO database was applied to detect and analyze the expression of miR-545 and NR3C2 in OSCC tissues. Two OSCC cell lines including CAL27 and Tca-83 were utilized to determine the function of miR-454/NR3C2 on OSCC cells biological behaviors. miR-454 and NR3C2 expressions were regulated by miR-454 mimic/inhibitor and pcDNA3.1-NR3C2/si-NR3C2, respectively. Cells biological behaviors were evaluated by cell proliferation, colony formation, and transwell assays. RESULTS The data collected from GEO database indicated that miR-454 expression was upregulated in OSCC tissues; however, the expression of NR3C2 assumed a downward trend. In vitro experiments, the expression trend of miR-454 in OSCC cell lines was consistent with that of the trend in tissues, and the OSCC cells growth and movement abilities significantly decreased after miR-454 depletion. Through co-transfection experiments, we explored that the abilities of OSCC cell proliferation, colony formation, invasion, and migration obviously reduced after miR-454 depletion, but these phenomena were mitigated to some extent after NR3C2 silencing. CONCLUSION The study illustrates that miR-454 acts as an active regulator to facilitate OSCC cells growth, colony formation, invasion, and migration by targeting NR3C2, which may afford a novel perspective and possibility for the targeted treatment of OSCC.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Department of Stomatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yu-Kun Wang
- Department of Stomatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bo Lv
- Eye 3 Division of Red Flag Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Hong Jin
- College of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
16
|
Shao Z, Ma X, Zhang Y, Sun Y, Lv W, He K, Xia R, Wang P, Gao X. CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer. Mol Carcinog 2020; 59:533-544. [PMID: 32181526 PMCID: PMC7187273 DOI: 10.1002/mc.23177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Elevated expression of Copine 1 (CPNE1) has been observed in multiple cancers; however, the underlying mechanisms by which it affects cancer cells are unclear. We aimed to study the effect of CPNE1 on the tumorigenesis and radioresistance of triple‐negative breast cancer (TNBC). Quantitative real‐time polymerase chain reaction was used to detect the expression of CPNE1 in TNBC tissues and cell lines. Western blot, immunohistochemistry, and immunofluorescence were used to investigate the levels of CPNE1, p‐AKT, AKT, cleaved caspase‐3, cleaved PARP1, and γ‐H2AX. Cell viability and apoptosis were measured by CCK‐8 and flow cytometry, respectively. CPNE1 was overexpressed in TNBC tissues and cell lines and was associated with tumor size, distant metastases, and survival rates of patients with TNBC. Moreover, function study shows that CPNE1 promoted cell viability and inhibited cell apoptosis in vitro and inhibited the radiosensitivity of TNBC. Importantly, inactivation of AKT signaling inhibited the tumorigenesis and radioresistance mediated by CPNE1 in TNBC cells. In vivo xenograft study also shows that CPNE1 knockdown inhibited tumor growth and promoted cell apoptosis. Overall, our findings suggest that CPNE1 promotes tumorigenesis and radioresistance in TNBC by regulating AKT activation and targeted CPNE1 expression may be a strategy to sensitize TNBC cells toward radiation therapy.
Collapse
Affiliation(s)
- Zhihong Shao
- Department of Radiology, Shibei hospital of Jing'an District of Shanghai, Shanghai, China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yufeng Zhang
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Yuanyuan Sun
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Wenjuan Lv
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Kuigang He
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Rui Xia
- Department of Radiology, Luodian Hospital, Shanghai, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai, China
| |
Collapse
|
17
|
Wang DY, Li N, Cui YL. Long Non-coding RNA CCAT1 Sponges miR-454 to Promote Chemoresistance of Ovarian Cancer Cells to Cisplatin by Regulation of Surviving. Cancer Res Treat 2020; 52:798-814. [PMID: 32124583 PMCID: PMC7373880 DOI: 10.4143/crt.2019.498] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose Colon cancer-associated transcript 1 (CCAT1) was identified as an oncogenic long non-coding RNA (lncRNA) in a variety of cancers. However, there was a lack of understanding of the mechanism by which CCAT1 conferred cisplatin (also known as DDP) resistance in ovarian cancer cells. Materials and Methods Cell viability of A2780, SKOV3, A2780/DDP, and SKOV3/DDP cells upon cisplatin treatment was monitored by MTT assay. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected the expression levels of CCAT1 and miR-454. The effect of sh-CCAT1 on cisplatin response was investigated in xenografts study. Bioinformatic analysis, luciferase reporter assay and qRT-PCR were conducted to validate the direct interaction among CCAT1, miR-454, and survivin. Apoptosis was determined by flow cytometry after dual staining of Annexin-V-FITC/propidium iodide, and the expression of apoptosis-related proteins Bcl-2, Bax and survivin were detected by qRT-PCR and Western blotting. Xenograft study was conducted to monitor in vivo tumor formation. Results CCAT1 was highly expressed in cisplatin-resistant ovarian cancer cell line A2780/DDP and SKOV3/DDP. Knockdown of CCAT1 restored sensitivity to cisplatin in vitro and in vivo. Our data revealed that silencing of CCAT1 promoted cisplatin-induced apoptosis via modulating the expression of pro- or anti-apoptotic proteins Bax, Bcl-2, and survivin. CCAT1 directly interacted with miR-454, and miR-454 overexpression potentiated cisplatin-induced apoptosis. Survivin was identified as a functional target of miR-454, restoration of survivin attenuated the effect of miR-454 on cisplatin response. In addition, miR-454 inhibitor or overexpression of survivin was found to abolish sh-CCAT1–induced apoptosis upon cisplatin treatment. Conclusion CCAT1/miR-454/survivin axis conferred cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- De-Ying Wang
- Department of Gynaecology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Li
- Department of Gynaecology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Lan Cui
- Department of Gynaecology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Li X, Hou L, Yin L, Zhao S. LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J Biosci 2020; 45:45. [PMID: 32098924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is a one of the subtypes of breast cancer which accounts for approximately 10-20% of all breast cancers. LncRNA XIST (XIST) is reported to be dysfunctional in numerous tumor types and is involved in the key pathways of cancer initiation, progression and metastasis. Thus, in the present study, we explored the detailed molecular mechanism of XIST in TNBC. XIST was down-regulated in TNBC tissues and cell lines. Overexpressed XIST inhibited cell proliferation, epithelial mesenchymal transition (EMT) and induced apoptosis in vitro as well as suppressed TNBC tumor growth in vivo. MicroRNA (miR)- 454 was up-regulated in TNBC tissues and cell lines. Knockdown of miR-454 inhibited TNBC progression by suppressing cell proliferation, EMT and inducing cell apoptosis. Moreover, miR-454 was predicted and confirmed to be a target of XIST, and rescue assay indicated that overexpressed miR-454 could reverse XIST restoration mediated-anti-tumor effects on TNBC cells. In conclusion, XIST interacts with miR-454 to inhibit cells proliferation, EMT and induce apoptosis in TNBC, indicating a promising treatment strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Thyroid and Breast Surgery, the Suzhou Wuzhong People'S Hospital, Suzhou, Jiangsu, China
| | | | | | | |
Collapse
|
19
|
Pan L, Wan M, Zheng W, Wu R, Tang W, Zhang X, Yang T, Ye C. Intrabeam Radiation Inhibits Proliferation, Migration, and Invasiveness and Promotes Apoptosis of MCF-7 Breast Cancer Cells. Technol Cancer Res Treat 2019; 18:1533033819840706. [PMID: 30929609 PMCID: PMC6444775 DOI: 10.1177/1533033819840706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Intraoperative radiotherapy differs from the more commonly used external beam radiation
with respect to fractionation, radiation energy, dose rate, and target volume, which may
influence the irradiated cells in a complex manner. However, experimental studies of
intraoperative radiotherapy are limited. Intrabeam is a frequently used intraoperative
radiotherapy device; we evaluated its effects on the proliferation, apoptosis, migration,
and invasion of MCF-7 human breast cancer cells. We performed colony formation assays for
cells irradiated with single radiation doses of 0 to 16 Gy. Other cells were irradiated
with single radiation doses of 0 to 6 Gy and then continued to be cultured. We measured
cell-cycle distributions and apoptosis rates 24 hours later, using flow cytometry, and
performed wound-healing assays, Transwell tests, and terminal deoxynucleotidyl
transferase–mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling staining 4 weeks
later. Colony formation assays showed no positive colonies from cells irradiated with
doses of ≥6 Gy. In flow cytometry, the experimental groups had higher
late-apoptosis/necrosis rates (P < .01) and higher percentages of
cells arrested in G1 phase (P < .01). Experimental groups
also had much lower scratch-repair rates in the wound healing assay (P
< .001) and higher apoptosis rates in the terminal deoxynucleotidyl
transferase–mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling assay (P
< .05). In Transwell tests, the 4 Gy and 6 Gy groups had fewer invading
cells than the control group (P < .05). Single-dose irradiation of 6
Gy with the Intrabeam device can effectively inhibit proliferation, migration, and
invasiveness and promote apoptosis in MCF-7 cells with long-lasting effects.
Collapse
Affiliation(s)
- Lingxiao Pan
- 1 Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,2 Department of Breast Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minghui Wan
- 3 Department of Radiation Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenbo Zheng
- 2 Department of Breast Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Wu
- 4 Department of Radiotherapy, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Tang
- 2 Department of Breast Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoshen Zhang
- 2 Department of Breast Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tong Yang
- 5 Department of Pathology, the Second Affiliated Hospital (Panyu branch) of Guangzhou Medical University, Guangzhou, China
| | - Changsheng Ye
- 1 Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Khaled N, Bidet Y. New Insights into the Implication of Epigenetic Alterations in the EMT of Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11040559. [PMID: 31003528 PMCID: PMC6521131 DOI: 10.3390/cancers11040559] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer and leading cause of cancer death among women worldwide, encompassing a wide heterogeneity of subtypes with different clinical features. During the last two decades, the use of targeted therapies has emerged in clinical research in order to increase treatment efficiency, improve prognosis and reduce recurrence. However, the triple negative breast cancer (TNBC) subtype remains a clinical challenge, with poor prognosis since no therapeutic targets have been identified. This aggressive breast cancer entity lacks expression of oestrogen receptor (ER) and progesterone receptor (PR), and it does not overexpress human epidermal growth factor receptor 2 (HER2). The major reason for TNBC poor prognosis is early therapeutic escape from conventional treatments, leading to aggressive metastatic relapse. Metastases occur after an epithelial-mesenchymal transition EMT of epithelial cells, allowing them to break free from the primary tumour site and to colonize distant organs. Cancer-associated EMT consists not only of acquired migration and invasion ability, but involves complex and comprehensive reprogramming, including changes in metabolism, expression levels and epigenetic. Recently, many studies have considered epigenetic alterations as the primary initiator of cancer development and metastasis. This review builds a picture of the epigenetic modifications implicated in the EMT of breast cancer. It focuses on TNBC and allows comparisons with other subtypes. It emphasizes the role of the main epigenetic modifications lncRNAs, miRNAs, histone and DNA- modifications in tumour invasion and appearance of metastases. These epigenetic alterations can be considered biomarkers representing potential diagnostic and prognostic factors in order to define a global metastatic signature for TNBC.
Collapse
Affiliation(s)
| | - Yannick Bidet
- Laboratoire d'Oncologie Moléculaire, Centre Jean PERRIN et IMoST, UMR 1240, Inserm/Université Clermont Auvergne 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| |
Collapse
|
21
|
Zhang MQ, Gao JL, Liao XD, Huang TH, Zhang MN, Wang MQ, Tian Y, Bai J, Zhou CH. miR-454 regulates triglyceride synthesis in bovine mammary epithelial cells by targeting PPAR-γ. Gene 2018; 691:1-7. [PMID: 30599237 DOI: 10.1016/j.gene.2018.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
Triglycerides account for 99% of milk fat and play a central role in determining dairy product quality. Many factors influence triglyceride synthesis and milk fat secretion. MicroRNAs have been verified to be involved in numerous biological processes, but little is known about their roles in milk fat biosynthesis. In this study, we aim to explore whether miR-454 could regulate triglyceride synthesis in bovine mammary epithelial cells (BMECs) by targeting PPAR-γ. A luciferase reporter assay showed that the predicted target site was correct and that miR-454 and PPAR-γ had a direct interaction. In addition, miR-454 mimics and inhibitors were transfected into BMECs. The results showed that both the mRNA and protein levels of PPAR-γ were negatively correlated with miR-454 expression. Fat droplet accumulation and triglyceride production were also inversely correlated with miR-454 expression. Our results indicate that miR-454 regulates triglyceride synthesis by directly targeting the PPAR-γ 3' UTR in BMECs, suggesting that miR-454 could potentially be a new factor to elevate dairy product quality.
Collapse
Affiliation(s)
- Ming-Qi Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Jun-Lei Gao
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Xian-Dong Liao
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Ting-Hao Huang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Mei-Na Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Ming-Qi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Yu Tian
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Jian Bai
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China
| | - Chang-Hai Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, PR China.
| |
Collapse
|
22
|
Shi Z, She K, Li H, Yuan X, Han X, Wang Y. MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem Biol Interact 2018; 298:8-14. [PMID: 30367833 DOI: 10.1016/j.cbi.2018.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are emerging as important regulators in the pathogenesis of pre-eclampsia (PE). Recent evidence has reported that miR-454 plays an important role in regulating cell proliferation and invasion. The decreased proliferation and invasion of trophoblast cells contribute to the pathogenesis of PE. However, whether miR-454 is involved in the regulation of trophoblast cell proliferation and invasion remains unknown. In this study, we aimed to investigate the potential role and underlying mechanism of miR-454 in regulating trophoblast cell proliferation and invasion in vitro. We found that miR-454 expression was significantly decreased in placental tissues from PE patients compared to controls. Transfection of miR-454 mimics promoted the proliferation, reduced the apoptosis, and increased invasion of trophoblast cells, while transfection of miR-454 inhibitor showed opposite effects. Bioinformatics analysis showed that activin receptor-like kinase 7 (ALK7) was a potential target gene of miR-454. Dual-luciferase reporter assay showed miR-454 directly targeted the 3'-untranslated region of AKL7. Further experiments showed that miR-454 negatively regulated ALK7 expression. Interestingly, transfection of miR-454 mimics significantly abrogated the inhibitory effect of Nodal on trophoblast cell proliferation and invasion. Moreover, overexpression of ALK7 markedly reversed the promotion effect of miR-454 on trophoblast cell proliferation and invasion. Overall, our results suggest that miR-454 promotes the proliferation and invasion of trophoblast cells by downregulation of ALK7. Our study suggests that miR-454 may play critical roles in the pathogenesis of PE and serve as a potential therapeutic target for treatment of PE.
Collapse
Affiliation(s)
- Ziyun Shi
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Kaie She
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Hong Li
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiaohua Yuan
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xi Han
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yaqin Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
23
|
Wang F, Yan J. MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed Pharmacother 2018; 107:746-753. [PMID: 30138897 DOI: 10.1016/j.biopha.2018.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder representing a major cause for maternal and perinatal morbidity and mortality. The dysfunction of trophoblast cells plays an important role in the pathogenesis of PE. In recent years, microRNAs (miRNAs) have been suggested to play an important role in regulating trophoblast cell biological functions involved in the pathogenesis of PE. Accumulating evidence has showed that miR-454 plays an important role in regulating cell functions. However, whether miR-454 is involved in regulating cell functions of trophoblast cells during PE remains unclear. In this study, we found that miR-454 expression was significantly downregulated in placental tissues from PE patients. in vitro experiments showed that miR-454 overexpression significantly increased proliferation, inhibited apoptosis, and promoted invasion of trophoblast cells, whereas miR-454 inhibition markedly suppressed proliferation, increased apoptosis, and inhibited invasion of trophoblast cells. Interestingly, bioinformatics analysis predicted that ephrin receptor B4 (EPHB4), an important gene for regulating trophoblast cell function in PE, was a potential target gene of miR-454. Dual-luciferase reporter assay showed that miR-454 directly targeted the 3'-untranslated region of EPHB4. Real-time quantitative polymerase chain reaction and Western blot analysis demonstrated that miR-454 negatively regulated EPHB4 expression in trophoblast cells. Moreover, miR-454 expression was found inversely correlated with EPHB4 expression in placental tissues from PE patients. Importantly, EPHB4 overexpression partially reversed the promotion effect of miR-454 overexpression on trophoblast cell proliferation and invasion. Taken together, these findings demonstrate that miR-454 promotes the proliferation and invasion of trophoblast cells by inhibiting EPHB4 expression, and the decreased miR-454 expression may contribute to PE by promoting EPHB4 expression. Our study provides novel insights into understanding the molecular pathogenesis of PE.
Collapse
Affiliation(s)
- Furong Wang
- Department of Obstetrics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jin Yan
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| |
Collapse
|
24
|
ZIC1 acts a tumor suppressor in breast cancer by targeting survivin. Int J Oncol 2018; 53:937-948. [PMID: 29956756 PMCID: PMC6065452 DOI: 10.3892/ijo.2018.4450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we aimed to identify the tumor suppressive roles of zinc finger of the cerebellum 1 (ZIC1) in patients with malignant breast neoplasms and to examine the association between ZIC1 and survivin expression. For this purpose, 140 invasive breast cancer specimens, 1,075 RNA breast cancer samples from The Cancer Genome Atlas (TCGA), 6 human breast cancer cell lines and MCF-10A normal breast epithelial cells were selected in order to compare the expression level of ZIC1 with that of survivin via immunohistochemistry and western blot analysis. Subsequently, the MDA-MB-231 and SK-BR3 cells with a lower ZIC1 expression were transfected with rLV-Zic1-PGK-Puro lentivirus or rLV-ZsGreen-PGK-Puro lentivirus in order to observe any alterations in cell proliferation and apoptosis through MTT assay, colony formation assay, mitochondrial membrane potential assay and flow cytometric analysis, and to analyze the modulation of molecular mechanisms by western blot analysis. In addition, xenograft mouse models were constructed to explore the role of ZIC1 in the growth of implanted tumors. The results revealed that ZIC1 negatively correlated with survivin in tumors and cells, and a higher ZIC1 RNA expression indicated a better overall survival in the 1,075 TCGA RNA breast cancer samples. In vitro, the overexpression of ZIC1 inhibited cell proliferation, reduced mitochondrial membrane potential and promoted the apoptosis of the MDA-MB-231 and SK-BR3 breast cancer cells by inactivating the Akt/mTOR/P70S6K pathway, suppressing survivin expression, modulating the cell cycle, releasing cytochrome c (Cyto-c) into the cytosol and activating caspase proteins. In vivo, an elevated ZIC1 expression suppressed the growth of implanted tumors and downregulated survivin expression in tumors. On the whole, the findings of this study demonstrate that ZIC1 plays a tumor suppressive role in breast cancer, by targeting surviving, significantly downregulating its expression.
Collapse
|
25
|
Fu M, Wang B, Chen X, He Z, Wang Y, Li X, Cao H, Zheng SJ. gga-miR-454 suppresses infectious bursal disease virus (IBDV) replication via directly targeting IBDV genomic segment B and cellular Suppressors of Cytokine Signaling 6 (SOCS6). Virus Res 2018; 252:29-40. [PMID: 29777734 DOI: 10.1016/j.virusres.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs), as post-transcriptional regulators, play important roles in the process of viral infection through inhibiting virus replication or modulating host immune response. However, the role of miRNAs in host response against infectious bursal disease virus (IBDV) infection is still unclear. In this study, we found that gga-miR-454 of the host was decreased in response to IBDV infection and that transfection of DF-1 cells with miR-454 inhibited IBDV replication via directly targeting the specific sequence of IBDV genomic segment B, while blockage of endogenous miR-454 by inhibitors enhanced virus replication. Furthermore, gga-miR-454 increased the expression of IFN-β by targeting Suppressors of Cytokine Signaling 6 (SOCS6), enhancing the antiviral response of host cells. These findings highlight a crucial role of gga-miR-454 in host defense against IBDV infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiyuan He
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Jiang X, Zhou Y, Sun AJ, Xue JL. NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol 2018; 233:8558-8566. [PMID: 29323713 DOI: 10.1002/jcp.26470] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Abstract
Breast cancer is a kind of common female cancers. Increasing evidence has exhibited that lncRNAs exert a crucial role in breast cancer. So far, the mechanism of lncRNAs in breast cancer is still not well established. In our current study, we focused on the biological role of lncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) in breast cancer. We observed that NEAT1 levels were significantly increased in human breast cancer cells including MCF-7, MDA-MB-453, MDA-MB-231, and SKBR3 cells compared to normal mammary epithelial cells MCF-10A while miR-448 was decreased. We found that downregulation of NEAT1 was able to inhibit the growth of breast cancer cells and miR-448 mimic exerted the similar function. Bioinformatics analysis and dual luciferase reporter assays confirmed the negative correlation between NEAT1 and miR-448 in vitro. In addition, ZEB1 was predicted as a novel mRNA target of miR-448. Overexpression of NEAT1 can induce breast cancer cell growth, migration, and invasion by inhibiting miR-448 and upregulating ZEB1. It was demonstrated that NEAT1 can increase ZEB1 levels while miR-448 mimic can repress ZEB1. It was speculated in our study that NEAT1 can serve as a competing endogenous lncRNA (ceRNA) to modulate ZEB1 by sponging miR-448 in breast cancer. To conclude, we uncovered that NEAT1 participated in breast cancer progression by regulating miR-448 and ZEB1. NEAT1 can be provided as a vital biomarker in breast cancer diagnosis and treatment therapy.
Collapse
Affiliation(s)
- Xing Jiang
- Center of Reproductive Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yong Zhou
- Department of Breast Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Ai-Jun Sun
- Department of General Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Jun-Li Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|