1
|
Citherlet T, Raberin A, Manferdelli G, Millet GP. Impact of menopause on responses to hypoxia and incidence of acute mountain sickness. Eur J Appl Physiol 2025:10.1007/s00421-025-05790-6. [PMID: 40299027 DOI: 10.1007/s00421-025-05790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Menopause results in decreased ovarian hormones, potentially impacting physiological responses to hypoxia and its tolerance. This study explored menopause's influence on physiological responses during rest and exercise in normobaric hypoxia and its role in predicting acute mountain sickness (AMS). METHODS Thirteen eumenorrheic women in their mid-luteal phase (EW, age = 32 ± 8 year) and fifteen postmenopausal women (PW, age = 63 ± 2 year) were examined on two occasions. Their ovarian hormonal levels were measured. In the first visit, hypoxic ventilatory response (HVR), physiological responses (ventilation, pulse oximetry, and heart rate) at rest and exercise in normobaric hypoxia (FiO2 = 0.14) and anxiety levels were tested. On the second visit, cortisol awakening response and oxidative stress markers were measured at low altitude, with cortisol awakening response repeated during an overnight stay at high altitude (3375 m) along with evaluation for AMS using the Lake Louise Score, peripheral oxygen saturation and anxiety levels. RESULTS PW exhibited lower estradiol (16.9 ± 16.7 vs 4.6 ± 2.3 pg/ml, p < 0.01) and progesterone (13.39 ± 7.61 vs 0.06 ± 0.07 ng/ml, p < 0.001) levels than EW. Despite higher ventilation at rest in EW compared to PW in normoxia (10.0 ± 1.5 vs 8.5 ± 0.9 L/min; p < 0.01) and hypoxia (9.4 ± 1.3 vs 8.2 ± 1.3 L/min) , HVR (- 0.34 ± 0.13 vs - 0.27 ± 0.15 L/min/%) was similar between groups (p = 0.26). AMS incidence did not differ between EW (31%) and PW (40%). CONCLUSION In conclusion, EW had higher ventilation at rest in normoxia and normobaric hypoxia compared to PW, but similar responses and AMS incidence at high altitude. Age has minimal impact on HVR in women.
Collapse
Affiliation(s)
- Tom Citherlet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland.
| | - Antoine Raberin
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Grégoire P Millet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Zhang Y, Wei J, Gao C, Feng S, Wang H, Chai J, Zhu Y, Yuan Y, Ren L. The efficacy and safety of Chinese herbal medicine Shugan Sanjie decoction in the treatment of uterine fibroids: a systematic review and meta-analysis. Front Pharmacol 2025; 16:1508015. [PMID: 40313615 PMCID: PMC12043887 DOI: 10.3389/fphar.2025.1508015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background Shugan Sanjie Decoction (SGSJ) is a commonly used Chinese medicine prescription for the treatment of uterine fibroids (UFs). However, there is still a lack of evidence for its effects and safety. To systematically assess the efficacy and safety of SGSJ in conjunction with Mifepristone [MFP] or Leuprolide acetate [LA] for the treatment of UFs, thereby providing a reference for clinical medication. Objective To systematically assess the efficacy and safety of SGSJ in combination with MFP or LA for the treatment of UFs, thereby providing a basis for clinical medication decisions. Methods Eight digital medical databases were systematically searched to identify randomized controlled trials (RCTs) evaluating the use of SGSJ combined with MFP or LA for the treatment of UFs. The search spanned from the inception of each database to July 2024. Risk of Bias (ROB) 2.0 and RevMan 5.3 software were utilized for systematic review and meta-analysis. Eligible studies comprised RCTs comparing SGSJ plus MFP or LA with MFP or LA alone. The primary outcome was the Clinical Effective Rate (CER). Secondary outcomes included (1) Uterine Fibroid Volume (UFV) (2), Uterine Volume (UV) (3), Serum Sex Hormone Levels [Follicle-Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estradiol (E2), Progesterone (P)], and (4) Traditional Chinese Medicine Syndrome Scores (TSS). Results The meta-analysis comprised 12 RCTs with 952 participants. The results of meta-analysis showed that the total effective rate of SGSJ or combined with MFP or LA in the treatment of UFs [RR = 1.26, 95% CI (1.19, 1.34), P < 0.00001], which was statistically significant compared with the MFP or LA group and superior to the MFP or LA group (P < 0.05). Conclusion At present, there are evidence shows that SGSJ combined with MFP or LA improves CER, reduces UFV, and modulates sex hormone levels. However, due to the poor methodological quality and high heterogeneity of the included trials, our conclusions should be interpreted with caution. Future studies should prioritize rigorous RCTs with standardized treatment protocols, extended follow-up, and comprehensive safety assessments to identify SGSJ as a reliable treatment option for UFs. Systematic Review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024506017.
Collapse
Affiliation(s)
- Yang Zhang
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junfan Wei
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chanchan Gao
- Department of Oncology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Shenyang Feng
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haiying Wang
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junjie Chai
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yini Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yuan Yuan
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lirong Ren
- The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Li Z, Xiao J, Li C, Li X, Ren D. Correlation between hematological indicators in acclimatized high-altitude individuals and acute mountain sickness. PeerJ 2024; 12:e18738. [PMID: 39703914 PMCID: PMC11657198 DOI: 10.7717/peerj.18738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Background The impact of acute mountain sickness (AMS) on individuals ascending to plateaus, soon after exposure to high altitudes, is well-documented. However, the specific relationship between AMS and alterations in blood parameters remains unclear. Methods A total of 40 healthy volunteers were recruited. Following their arrival at an altitude of 3,300 m, an AMS questionnaire survey was administered 48 h later. Based on the AMS scores obtained, participants were categorized into three groups: non-AMS, mild AMS, and moderate/severe AMS (encompassing both moderate and severe cases). Blood routine tests were performed on all groups at 3-, 7-, and 30-days post-arrival at the plateau, with blood oxygen saturation tests conducted at 3 and 30 days after rapidly entering the plateau. Results In the current investigation, a total of 40 participants were stratified into non-AMS (n = 24), mild-AMS (n = 8), and moderate/severe-AMS (n = 8) cohorts subsequent to rapid ascension to an altitude of 3,300 m. The incidence of AMS in this study was 40%. Noteworthy elevations in red blood cells (RBC), hemoglobin (Hb), and hematocrit (HCT) levels were noted at the 3-day mark post-ascent across all delineated groups. By the 7th day, the moderate/severe-AMS cohort displayed sustained increments in Hb and HCT levels, whereas solely HCT levels rose in the mild-AMS and non-AMS cohorts. Upon reaching the 30-day milestone, the moderate/severe-AMS group demonstrated a reduction in RBC, Hb, and HCT levels, while only HCT levels decreased in the mild-AMS and non-AMS groups. Furthermore, it was observed that all groups exhibited notable reductions in oxygen saturation (SpO2) at 3 days post-ascent, followed by a partial recovery at 30 days, albeit remaining below baseline levels. The correlation analysis results indicated that RBC, Hb, and HCT exhibited a positive correlation with the severity of AMS after a 7-day acclimatization period at high altitude. Conversely, SpO2 demonstrated a negative correlation with the severity of AMS following the same duration at high altitude. The findings of the study suggest a strong association between alterations in RBC, Hb, and HCT levels and AMS, particularly among individuals in the moderate/severe-AMS category who displayed more significant fluctuations in these parameters. Conclusion Individuals suffering from moderate to severe AMS demonstrated increased levels of RBC, Hb, and HCT, as well as reduced SpO2, indicating a greater need for oxygen adaptation to high-altitude hypoxia. These findings emphasize the physiological adjustments to high altitudes and their potential implications for the treatment of AMS.
Collapse
Affiliation(s)
- Zhicai Li
- Air Force Clinical College; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Cuiying Li
- Air Force Clinical College; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Xiaowei Li
- Department of Blood Transfusion, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Daoju Ren
- Air Force Clinical College; The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Air Force Medical Center, Air Force Medical University, Beijing, China
| |
Collapse
|
4
|
Wang B, Chen S, Song J, Huang D, Xiao G. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. Front Physiol 2024; 15:1397280. [PMID: 38978820 PMCID: PMC11228308 DOI: 10.3389/fphys.2024.1397280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
High-altitude illnesses, encompassing a spectrum of health threats including Acute Mountain Sickness (AMS), pose significant challenges to individuals exposed to high altitude environments, necessitating effective prophylaxis and immediate management. Given the variability in individual responses to these conditions, accurate prediction of high-altitude illnesses onset is of paramount importance. This review systematically consolidates recent advancements in research on predicting AMS by evaluating existing cohort data, predictive models, and methodologies, while also delving into the application of emerging technologies. Through a thorough analysis of scholarly literature, we discuss traditional prediction methods anchored in physiological parameters (e.g., heart rate, respiratory frequency, blood pressure) and biochemical markers, as well as the integration and utility of novel technologies such as biosensors, genetic testing, and artificial intelligence within high-altitude prediction research. While conventional pre-diction techniques have been extensively used, they are often constrained by limitations in accuracy, reliability, and multifactorial influences. The advent of these innovative technologies holds promise for more precise individual risk assessments and personalized preventive and therapeutic strategies across various forms of AMS. Future research endeavors must pivot decisively towards the meticulous identification and stringent validation of innovative predictive biomarkers and models. This strategic re-direction should catalyze intensified interdisciplinary cooperation to significantly deepen our mechanistic insights into the pathogenesis of AMS while refining existing prediction methodologies. These groundbreaking advancements harbor the potential to fundamentally transform preventive and therapeutic frameworks for high-altitude illnesses, ultimately securing augmented safety standards and wellbeing for individuals operating at elevated altitudes with far-reaching global implications.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Shanji Chen
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Hunan Primary Digital Engineering Technology Research Center for Medical Prevention and Treatment, Huaihua, China
- National Institute of Hospital Administration (NIHA), Beijing, China
| | | | - Dan Huang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration (NIHA), Beijing, China
| |
Collapse
|
5
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Chen Y, Tang X, Zeng X, Han B, Xie H, Wang W, Sun L, Hu M, Gao Y, Xiao W. Gastrointestinal syndrome encountered during a train voyage to high altitudes: A 14-day survey of 69 passengers in China. Travel Med Infect Dis 2024; 59:102718. [PMID: 38582488 DOI: 10.1016/j.tmaid.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The diagnosis and evaluation of the severity of acute mountain sickness (AMS) continue to be problematic due to a lack of consensus on the inclusion of symptoms in a scoring system. Recent investigations highlight the significance of gastrointestinal symptoms in identifying this condition. However, the specific gastrointestinal symptoms associated with AMS have not been thoroughly elucidated in previous studies, and the underlying risk factors remain inadequately comprehended. METHODS This study aimed to investigate the characteristics, trends, and risk factors related to gastrointestinal symptoms encountered during train travel to high altitude. A total of 69 passengers, specifically all with medical backgrounds, were surveyed 6 times over a period of 14 days. RESULTS The daily incidence of abdominal discomfort was higher than non-gastrointestinal symptoms within 14 days. Gastrointestinal symptoms demonstrated a greater prevalence, longer duration, and increased risk compared to non-gastrointestinal symptoms, such as headaches. The symptoms of abdominal distension and bowel sound hyperaction were found to be prevalent and persistent among patients diagnosed with AMS, exhibiting a high incidence rate. Gender, age, body mass index (BMI), smoking habits, and alcohol consumption were identified as risk factors associated with the occurrence and duration of gastrointestinal symptoms. CONCLUSION This study suggests that gastrointestinal symptoms are more common and persistent when traveling to the plateau by train. These symptoms should be taken into consideration in the further diagnosis and prevention of AMS. Therefore, this study provides a significant theoretical foundation for the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiong Zeng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Mateikaitė-Pipirienė K, Jean D, Paal P, Horakova L, Kriemler S, Rosier AJ, Andjelkovic M, Beidleman BA, Derstine M, Hefti JP, Hillebrandt D, Keyes LE. Menopause and High Altitude: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2024; 25:1-8. [PMID: 37922458 DOI: 10.1089/ham.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Mateikaitė-Pipirienė, Kastė, Dominique Jean, Peter Paal, Lenka Horakova, Susi Kriemler, Alison J. Rosier, Marija Andjelkovic, Beth A. Beidleman, Mia Derstine, Jacqueline Pichler Hefti, David Hillebrandt, and Linda E. Keyes for the UIAA MedCom writing group on Women's Health in the Mountains. Menopause and high altitude: A scoping review-UIAA Medical Commission Recommendations. High Alt Med Biol. 25:1-8, 2024. Background: Older people are an important fraction of mountain travelers and climbers, many of them postmenopausal women. The aim of this work was to review health issues that older and postmenopausal women may experience at high altitude, including susceptibility to high-altitude illness. Methods: We performed a scoping review for the UIAA Medical Commission series on Women's Health in the mountains. We searched PubMed and Cochrane libraries and performed an additional manual search. The primary search focused on articles assessing lowland women sojourning at high altitude. Results: We screened 7,165 potential articles. The search revealed three relevant articles, and the manual search another seven articles and one abstract. Seven assessed menopausal low-altitude residents during a high-altitude sojourn or performing hypoxic tests. Four assessed high-altitude residents. We summarize the results of these 11 studies. Conclusions: Data are limited on the effects of high altitude on postmenopausal women. The effects of short-term, high-altitude exposure on menopause symptoms are unknown. Menopause has minimal effect on the physiological responses to hypoxia in physically fit women and does not increase the risk of acute mountain sickness. Postmenopausal women have an increased risk of urinary tract infections, which may be exacerbated during mountain travel. More research is needed on the physiology and performance of older women at high altitude.
Collapse
Affiliation(s)
- Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Dominique Jean
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelesus Medical University, Salzburg, Austria
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Pharmacy, Singidunum University, Belgrade, Serbia
| | - Beth A Beidleman
- US Army Research Institute of Environmental Medicine, Military Performance Division, Natick MA
| | - Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsworthy, Devon, United Kingdom
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Guo H, Wang Q, Li T, Chen J, Zhang C, Xu Y, Chang Q, Li H, Sun W, Han R, Wang C, Wang C. Potential plasma biomarkers at low altitude for prediction of acute mountain sickness. Front Immunol 2023; 14:1237465. [PMID: 37841248 PMCID: PMC10569122 DOI: 10.3389/fimmu.2023.1237465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Background Ascending to high altitude can induce a range of physiological and molecular alterations, rendering a proportion of lowlanders unacclimatized. The prediction of acute mountain sickness (AMS) prior to ascent to high altitude remains elusive. Methods A total of 40 participants were enrolled for our study in the discovery cohort, and plasma samples were collected from all individuals. The subjects were divided into severe AMS-susceptible (sAMS) group, moderate AMS-susceptible (mAMS) group and non-AMS group based on the Lake Louise Score (LLS) at both 5000m and 3700m. Proteomic analysis was conducted on a cohort of 40 individuals to elucidate differentially expressed proteins (DEPs) and associated pathways between AMS-susceptible group and AMS-resistant group at low altitude (1400m) and middle high-altitude (3700m). Subsequently, a validation cohort consisting of 118 individuals was enrolled. The plasma concentration of selected DEPs were quantified using ELISA. Comparative analyses of DEPs among different groups in validation cohort were performed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the predictive efficiency of DEPs for the occurrence of AMS. Results The occurrence of the AMS symptoms and LLS differed significantly among the three groups in the discovery cohort (p<0.05), as well as in the validation cohort. Comparison of plasma protein profiles using GO analysis revealed that DEPs were primarily enriched in granulocyte activation, neutrophil mediated immunity, and humoral immune response. The comparison of potential biomarkers between the sAMS group and non-AMS group at low altitude revealed statistically higher levels of AAT, SAP and LTF in sAMS group (p=0.01), with a combined area under the curve(AUC) of 0.965. Compared to the mAMS group at low altitude, both SAP and LTF were found to be significantly elevated in the sAMS group, with a combined AUC of 0.887. HSP90-α and SAP exhibited statistically higher levels in the mAMS group compared to the non-AMS group at low altitude, with a combined AUC of 0.874. Conclusion Inflammatory and immune related biological processes were significantly different between AMS-susceptible and AMS-resistant groups at low altitude and middle high-altitude. SAP, AAT, LTF and HSP90-α were considered as potential biomarkers at low altitude for the prediction of AMS.
Collapse
Affiliation(s)
- Haoran Guo
- Medical School of Chinese PLA, Beijing, China
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Wang
- Department of Orthopeadics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Li
- Outpatient Department of Chinese People's Liberation Army No. 69316 Troops, Xinjiang, China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Outpatient Department of Chinese People's Liberation Army No. 69316 Troops, Xinjiang, China
| | - Ying Xu
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Medical School of Chinese PLA, Beijing, China
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hangyi Li
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiqiang Sun
- Outpatient Department of Chinese People's Liberation Army No. 69316 Troops, Xinjiang, China
| | - Ruidi Han
- Xinjiang Hotan Military Subdistrict, Xinjiang, China
| | - Chi Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengbin Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Ebihara T, Shimizu K, Mitsuyama Y, Ogura H, Oda J. Association between high cardiac output at altitude and acute mountain sickness: preliminary study on Mt. Fuji. J Physiol Anthropol 2023; 42:6. [PMID: 37055843 PMCID: PMC10099929 DOI: 10.1186/s40101-023-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Acute mountain sickness (AMS) affects around 30% of people climbing Mt. Fuji, but its pathogenesis is incompletely understood. The influence of a rapid ascent to high altitude by climbing and summiting Mt. Fuji on cardiac function in the general population is unknown, and its association with altitude sickness has not been clarified. METHODS Subjects climbing Mt. Fuji were included. Heart rate, oxygen saturation, systolic blood pressure, cardiac index (CI) and stroke volume index were measured multiple times at 120 m as baseline values and at Mt. Fuji Research Station (MFRS) at 3,775 m. Each value and its difference from the baseline value (Δ) of subjects with AMS (defined as Lake Louise Score [LLS] ≥ 3 with headache after sleeping at 3,775 m) were compared with those of non-AMS subjects. RESULTS Eleven volunteers who climbed from 2,380 m to MFRS within 8 h and stayed overnight at MFRS were included. Four suffered AMS. Compared with the non-AMS subjects, CI in the AMS subjects was significantly higher than that before sleeping (median [interquartile range]: 4.9 [4.5, 5.0] vs. 3.8 [3.4, 3.9] mL/min/m2; p = 0.04), and their ΔCI was significantly higher before sleeping (1.6 [1.4, 2.1] vs. 0.2 [0.0, 0.7] mL/min/m2; p < 0.01) and after sleeping (0.7 [0.3, 1.7] vs. -0.2 [-0.5, 0.0] mL/min/m2; p < 0.01). ΔCI in the AMS subjects dropped significantly after sleeping versus before sleeping (3.8 [3.6, 4.5] vs. 4.9 [4.5, 5.0] mL/min/m2; p = 0.04). CONCLUSIONS Higher values of CI and ΔCI were observed at high altitude in the AMS subjects. A high cardiac output might be associated with the development of AMS.
Collapse
Affiliation(s)
- Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Nye NS, Grubic T, Kim M, O'Connor F, Deuster PA. Universal Training Precautions: A Review of Evidence and Recommendations for Prevention of Exercise-Related Injury, Illness, and Death in Warfighters and Athletes. J Athl Train 2023; 58:232-243. [PMID: 35724358 PMCID: PMC10176841 DOI: 10.4085/1062-6050-0400.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facing pressure to train for victory, warfighters and athletes encounter numerous health risks that are directly related to their regular physical training. The concept of universal training precautions (UTPs) signifies universal processes designed to prevent unnecessary bodily harm, including injury, illness, and death, during physical training programs. Although no formal guidelines exist for collectively implementing a defined set of UTPs to address a broad scope of exercise-related health risks, recommendations and guidelines have been published relating to preventing sudden death during high school sports and collegiate conditioning sessions. A long list of critical topics must be considered as UTPs, including physical fitness factors, transition-period accommodation, hydration, environmental factors and acclimatization, appropriate recovery, use of medications and dietary supplements, and importantly, leadership. In this article, we outline in detail, with corresponding Strength of Recommendation Taxonomy ratings, what should be considered universal recommendations to minimize the risk of warfighters and athletes coming to harm when participating in group physical activities.
Collapse
Affiliation(s)
| | - Tyler Grubic
- Aviation Survival Training Center, NAS Patuxent River, MD
| | - Michael Kim
- Sports Medicine Clinic, Fort Belvoir Community Hospital, VA
| | | | - Patricia A. Deuster
- USU/MEM Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Silver Spring, MD
| |
Collapse
|
11
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
12
|
Wei CY, Chen PN, Lin SS, Huang TW, Sun LC, Tseng CW, Lin KF. Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute mountain sickness. BMC Bioinformatics 2022; 22:628. [PMID: 35641924 PMCID: PMC9153088 DOI: 10.1186/s12859-022-04749-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies on acute mountain sickness (AMS) have used fixed-location and fixed-time measurements of environmental and physiological variable to determine the influence of AMS-associated factors in the human body. This study aims to measure, in real time, environmental conditions and physiological variables of participants in high-altitude regions to develop an AMS risk evaluation model to forecast prospective development of AMS so its onset can be prevented.
Results Thirty-two participants were recruited, namely 25 men and 7 women, and they hiked from Cuifeng Mountain Forest Park parking lot (altitude: 2300 m) to Wuling (altitude: 3275 m). Regression and classification machine learning analyses were performed on physiological and environmental data, and Lake Louise Acute Mountain Sickness Scores (LLS) to establish an algorithm for AMS risk analysis. The individual R2 coefficients of determination between the LLS and the measured altitude, ambient temperature, atmospheric pressure, relative humidity, climbing speed, heart rate, blood oxygen saturation (SpO2), heart rate variability (HRV), were 0.1, 0.23, 0, 0.24, 0, 0.24, 0.27, and 0.35 respectively; incorporating all aforementioned variables, the R2 coefficient is 0.62. The bagged trees classifier achieved favorable classification results, yielding a model sensitivity, specificity, accuracy, and area under receiver operating characteristic curve of 0.999, 0.994, 0.998, and 1, respectively.
Conclusion The experiment results indicate the use of machine learning multivariate analysis have higher AMS prediction accuracies than analyses utilizing single varieties. The developed AMS evaluation model can serve as a reference for the future development of wearable devices capable of providing timely warnings of AMS risks to hikers.
Collapse
Affiliation(s)
- Chih-Yuan Wei
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ping-Nan Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan. .,Department of Biomedical Engineering, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan.
| | - Shih-Sung Lin
- Department of Computer Science and Information Engineering, Chinese Culture University, No.55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ling-Chun Sun
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Chun-Wei Tseng
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| | - Ke-Feng Lin
- Medical Informatics Office, Tri‑Service General Hospital, National Defense Medical Center, No.325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei, 11490, Taiwan.,School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan
| |
Collapse
|
13
|
Dzhalilova D, Kosyreva A, Vishnyakova P, Zolotova N, Tsvetkov I, Mkhitarov V, Mikhailova L, Kakturskiy L, Makarova O. Age-related differences in hypoxia-associated genes and cytokine profile in male Wistar rats. Heliyon 2021; 7:e08085. [PMID: 34632150 PMCID: PMC8488852 DOI: 10.1016/j.heliyon.2021.e08085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
Hypoxia tolerance of the organism depends on many factors, including age. High newborn organisms tolerance and high level of oxidative stress throughout aging were demonstrated by many studies. However, there is lack of investigations reflecting the expression of key hypoxia-inducible factor HIF in different age organisms in correlation to levels of pro-inflammatory and anti-inflammatory cytokines. Liver is a sensitive to hypoxia organ, and is an important organ in providing an acute reaction to infections – it synthesizes acute inflammation phase proteins, in particular, C-reactive protein. The aim of study was to determine relationship between age-related tolerance to hypoxia and HIF-1 and PHD2 (prolyl hydroxylase domain protein) expression levels in the liver and the production of cytokines in the spleen in newborn, prepubertal and adult Wistar rats. Newborn rats are characterized by high mRNA Hif-1α expression level in the liver, accompanied by a low content of HIF-1 protein and high level of PHD2. The growth in HIF-1α protein level throughout age is accompanied by the growth of pro-inflammatory cytokines level. Prepubertal animals are the least hypoxia resistant and their HIF-1α mRNA expression level was higher than in adult animals. The PHD2 activity in prepubertal animals was significantly reduced in comparison to newborn rats, and the HIF-1α protein level did not change. Further studies require the identification of additional mechanisms, determining the regulation of the HIF-1α level in prepubertal animals.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Anna Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia.,Histology Department, Peoples Friendship University of Russia (RUDN University), 117198, Miklukho-Maklaya st. 6, Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Peoples Friendship University of Russia (RUDN University), 117198, Miklukho-Maklaya st. 6, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Oparina st., 4, Moscow, Russia
| | - Natalia Zolotova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Ivan Tsvetkov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Vladimir Mkhitarov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Liliya Mikhailova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Lev Kakturskiy
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Olga Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| |
Collapse
|
14
|
Lang M, Vizcaíno-Muñoz G, Jopia P, Silva-Urra J, Viscor G. Physiological Responses at Rest and Exercise to High Altitude in Lowland Children and Adolescents. Life (Basel) 2021; 11:1009. [PMID: 34685380 PMCID: PMC8541065 DOI: 10.3390/life11101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decades, the number of lowland children exposed to high altitude (HA) has increased drastically. Several factors may influence the development of illness after acute HA exposure on children and adolescent populations, such as altitude reached, ascent velocity, time spent at altitude and, especially, their age. The main goal of this study was to evaluate the resting cardiorespiratory physiological and submaximal exercise responses under natural HA conditions by means of the six-minute walking test (six MWT). Secondly, we aimed to identify the signs and symptoms associated with acute mountain sickness (AMS) onset after acute HA exposure in children and adolescents. Forty-two children and adolescents, 18 boys and 24 girls aged from 11 to 15 years old, participated in this study, which was performed at sea level (SL) and during the first 42 h at HA (3330 m). The Lake Louise score (LLS) was recorded in order to evaluate the evolution of AMS symptoms. Submaximal exercise tests (six MWT) were performed at SL and HA. Physiological parameters such as heart rate, systolic and diastolic blood pressure, respiratory rate and arterialized oxygen saturation were measured at rest and after ending exercise testing at the two altitudes. After acute HA exposure, the participants showed lower arterial oxygen saturation levels at rest and after the submaximal test compared to SL (p < 0.001). Resting heart rate, respiratory rate and diastolic blood pressure presented higher values at HA (p < 0.01). Moreover, heart rate, diastolic blood pressure and dyspnea values increased before, during and after exercise at HA (p < 0.01). Moreover, submaximal exercise performance decreased at HA (p < 0.001). The AMS incidence at HA ranged from 9.5% to 19%, with mild to moderate symptoms. In conclusion, acute HA exposure in children and adolescent individuals produces an increase in basal cardiorespiratory parameters and a decrement in arterial oxygen saturation. Moreover, cardiorespiratory parameters increase during submaximal exercise at HA. Mild to moderate symptoms of AMS at 3330 m and adequate cardiovascular responses to submaximal exercise do not contraindicate the ascension of children and adolescents to that altitude, at least for a limited period of time.
Collapse
Affiliation(s)
- Morin Lang
- Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Guillem Vizcaíno-Muñoz
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, E-08028 Barcelona, Spain; (G.V.-M.); (G.V.)
| | - Paulina Jopia
- Occupational Health Department, Institute of Occupational Safety, Copiapó 1530000, Chile;
| | - Juan Silva-Urra
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile;
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, E-08028 Barcelona, Spain; (G.V.-M.); (G.V.)
| |
Collapse
|
15
|
Shi YJ, Wang JL, Gao L, Wen DL, Dan Q, Dong Y, Guo YT, Zhao CH, Li TJ, Guo J, Li ZB, Chen YD. Altitude Cardiomyopathy Is Associated With Impaired Stress Electrocardiogram and Increased Circulating Inflammation Makers. Front Physiol 2021; 12:640302. [PMID: 33776794 PMCID: PMC7991828 DOI: 10.3389/fphys.2021.640302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many sea-level residents suffer from acute mountain sickness (AMS) when first visiting altitudes above 4,000 m. Exercise tolerance also decreases as altitude increases. We observed exercise capacity at sea level and under a simulated hypobaric hypoxia condition (SHHC) to explore whether the response to exercise intensity represented by physiological variables could predict AMS development in young men. Eighty young men from a military academy underwent a standard treadmill exercise test (TET) and biochemical blood test at sea level, SHHC, and 4,000-m altitude, sequentially, between December 2015 and March 2016. Exercise-related variables and 12-lead electrocardiogram parameters were obtained. Exercise intensity and AMS development were investigated. After exposure to high altitude, the count of white blood cells, alkaline phosphatase and serum albumin were increased (P < 0.05). There were no significant differences in exercise time and metabolic equivalents (METs) between SHHC and high-altitude exposures (7.05 ± 1.02 vs. 7.22 ± 0.96 min, P = 0.235; 9.62 ± 1.11 vs. 9.38 ± 1.12, P = 0.126, respectively). However, these variables were relatively higher at sea level (8.03 ± 0.24 min, P < 0.01; 10.05 ± 0.31, P < 0.01, respectively). Thus, subjects displayed an equivalent exercise tolerance upon acute exposure to high altitude and to SHHC. The trends of cardiovascular hemodynamics during exercise under the three different conditions were similar. However, both systolic blood pressure and the rate-pressure product at every TET stage were higher at high altitude and under the SHHC than at sea level. After acute exposure to high altitude, 19 (23.8%) subjects developed AMS. Multivariate logistic regression analysis showed that METs under the SHHC {odds ratio (OR) 0.355 per unit increment [95% confidence intervals (CI) 0.159-0.793], P = 0.011}, diastolic blood pressure (DBP) at rest under SHHC [OR 0.893 per mmHg (95%CI 0.805-0.991), P = 0.030], and recovery DBP 3 min after exercise at sea level [OR 1.179 per mmHg (95%CI 1.043-1.333), P = 0.008] were independently associated with AMS. The predictive model had an area under the receiver operating characteristic curve of 0.886 (95%CI 0.803-0.969, P < 0.001). Thus, young men have similar exercise tolerance in acute exposure to high altitude and to SHHC. Moreover, AMS can be predicted with superior accuracy using characteristics easily obtainable with TET.
Collapse
Affiliation(s)
- Ya-Jun Shi
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jin-Li Wang
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ling Gao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dong-Lin Wen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Dan
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Dong
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Tao Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Hui Zhao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Teng-Jing Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zong-Bin Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Dai Chen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Dzhalilova D, Makarova O. Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular-Biological Characteristics. Biomedicines 2020; 8:E428. [PMID: 33080959 PMCID: PMC7603118 DOI: 10.3390/biomedicines8100428] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an important role in the development of many infectious, inflammatory, and tumor diseases. The predisposition to such disorders is mostly provided by differences in basic tolerance to oxygen deficiency, which we discuss in this review. Except the direct exposure of different-severity hypoxia in decompression chambers or in highland conditions, there are no alternative methods for determining organism tolerance. Due to the variability of the detection methods, differences in many parameters between tolerant and susceptible organisms are still not well-characterized, but some of them can serve as biomarkers of susceptibility to hypoxia. At the moment, several potential biomarkers in conditions after hypoxic exposure have been identified both in experimental animals and humans. The main potential biomarkers are Hypoxia-Inducible Factor (HIF)-1, Heat-Shock Protein 70 (HSP70), and NO. Due to the different mechanisms of various high-altitude diseases, biomarkers may not be highly specific and universal. Therefore, it is extremely important to conduct research on hypoxia susceptibility biomarkers. Moreover, it is important to develop a method for the evaluation of organisms' basic hypoxia tolerance without the necessity of any oxygen deficiency exposure. This can contribute to new personalized medicine approaches' development for diagnostics and the treatment of inflammatory and tumor diseases, taking into account hypoxia tolerance differences.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution ‘Research Institute of Human Morphology’, Moscow 117418, Russia;
| | | |
Collapse
|
17
|
Yang SL, Ibrahim NA, Jenarun G, Liew HB. Incidence and Determinants of Acute Mountain Sickness in Mount Kinabalu, Malaysia. High Alt Med Biol 2020; 21:265-272. [PMID: 32614265 PMCID: PMC7482124 DOI: 10.1089/ham.2020.0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Acute mountain sickness (AMS) is the most common type of high-altitude sickness. The incidence of AMS varies by mountain location, trail characteristics, and study design. The lack of local epidemiology data has driven us to investigate the incidence and severity of AMS and its associated factors at Mount Kinabalu, Malaysia. Methods: A cohort study was conducted to collect data from climbers after days 1 (3272 m) and 2 (4095 m) of ascent. A self-administered questionnaire was used to explore climbers' demographic and climb characteristics, history of AMS, alcohol exposure, and AMS prevention measures. The Lake Louis score 2018 was used to assess the presence and severity of AMS (cutoff ≥3). Univariate and multivariable logistic regressions were performed to determine the factors associated with the development of AMS on day 2. Results: Data from 345 climbers were analyzed. The incidence of AMS was 23.9% (95% confidence interval [CI] 19.5%-28.7%) and 21.7% (95% CI 17.5%-26.3%) on days 1 and 2, respectively. The majority were mild cases. Experiencing AMS on day 1 (odds ratio [OR] = 12.88; 95% CI 6.71-24.75), alcohol consumption (OR = 3.73; 95% CI 1.66-8.39), receiving guide advice on day 1 (OR = 0.49; 95% CI 0.26-0.93), and age (OR = 0.96; 95% CI 0.93-0.99) were significant determinants of AMS at Mount Kinabalu. Gender, history of AMS, past exposure to high altitude, ascending time, water intake, acetazolamide use, physical fitness, pulse rate, and peripheral capillary oxygen saturation (SpO2) were not associated with AMS at Mount Kinabalu. Conclusion: Future analysis with age strata is required to ascertain the association of age with AMS. Our research has signposted a strong call for collaborative efforts to improve the provision of hiking advice and discourage alcohol sales to mitigate the risk of AMS among Mount Kinabalu climbers.
Collapse
Affiliation(s)
- Su Lan Yang
- Centre for Clinical Epidemiology, Institute for Clinical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | | | - Grazele Jenarun
- Clinical Research Centre, Hospital Queen Elizabeth II, Kota Kinabalu, Malaysia
| | - Houng Bang Liew
- Clinical Research Centre, Hospital Queen Elizabeth II, Kota Kinabalu, Malaysia
| |
Collapse
|
18
|
Otani S, Miyaoka Y, Ikeda A, Ohno G, Imura S, Watanabe K, Kurozawa Y. Evaluating Health Impact at High Altitude in Antarctica and Effectiveness of Monitoring Oxygen Saturation. Yonago Acta Med 2020; 63:163-172. [PMID: 32884435 DOI: 10.33160/yam.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 11/05/2022]
Abstract
Background The Japanese Antarctic Research Expedition (JARE) has been conducting research activities in inland Antarctica, which is extremely cold dryland covered with a thick ice sheet. This environment may cause a health disorder called acute mountain sickness (AMS). To improve the safety of expedition members, we evaluated the impact of extreme environmental conditions on human health and the effectiveness of monitoring of hypoxia for the early detection of AMS. Methods In total, 9 members from JARE 59 were studied. Dome Fuji Station (Dome F), located 3,810 m above sea level (ASL), was the destination of the research party. We analyzed daily AMS scores (higher values correspond to more severe AMS-related symptoms), physiological findings, and percutaneous arterial blood oxygen saturation (SpO2) during the inland activity. We also determined the factors related to AMS scores. Results The average AMS score on arrival at Dome F was significantly higher than that at the departure point (560 m ASL). The average SpO2 level was significantly lower than that at other points. The SpO2 level correlated negatively with the AMS score in Spearman's rank correlation. Generalized estimating equations analysis showed that the AMS score was negatively associated with SpO2 level and positively associated with age. Conclusion Hypoxia is a contributory factor to AMS which we can easily assess by measuring the SpO2 level with a pulse oximeter. SpO2 monitoring is a potentially useful health management tool for members in inland Antarctic expeditions. In addition, our results are helpful for understanding physiological responses and health issues in extreme environments.
Collapse
Affiliation(s)
- Shinji Otani
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | - Yoichi Miyaoka
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo 060-8648, Japan
| | - Atsushi Ikeda
- Department of Urology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Giichiro Ohno
- Department of Surgery, Tokatsu Hospital, Nagareyama 270-0153, Japan.,National Institute of Polar Research, Tachikawa 190-8518, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Tachikawa 190-8518, Japan
| | | | - Youichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
19
|
Beidleman BA, Fulco CS, Cymerman A, Staab JE, Buller MJ, Muza SR. New metric of hypoxic dose predicts altitude acclimatization status following various ascent profiles. Physiol Rep 2019; 7:e14263. [PMID: 31660703 PMCID: PMC6817994 DOI: 10.14814/phy2.14263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/14/2019] [Indexed: 11/24/2022] Open
Abstract
Medical personnel need practical guidelines on how to construct high altitude ascents to induce altitude acclimatization and avoid acute mountain sickness (AMS) following the first night of sleep at high altitude. Using multiple logistic regression and a comprehensive database, we developed a quantitative prediction model using ascent profile as the independent variable and altitude acclimatization status as the dependent variable from 188 volunteers (147 men, 41 women) who underwent various ascent profiles to 4 km. The accumulated altitude exposure (AAE), a new metric of hypoxic dose, was defined as the ascent profile and was calculated by multiplying the altitude elevation (km) by the number of days (d) at that altitude prior to ascent to 4 km. Altitude acclimatization status was defined as the likely presence or absence of AMS after ~24 h of exposure at 4 km. AMS was assessed using the Cerebral Factor Score (AMS-C) from the Environmental Symptoms Questionnaire and deemed present if AMS-C was ≥0.7. Other predictor variables included in the model were age and body mass index (BMI). Sex, race, and smoking status were considered in model development but eliminated due to inadequate numbers in each of the ascent profiles. The AAE (km·d) significantly (P < 0.0001) predicted AMS in the model. For every 1 km·d increase in AAE, the odds of getting sick decreased by 41.3%. Equivalently, for every 1 km·d decrease in AAE, the odds of getting sick increased by 70.4%. Age and BMI were not significant predictors. The model demonstrated excellent discrimination (AUC = 0.83 (95% CI = 0.79-0.91) and calibration (Hosmer-Lemeshow = 0.11). The model provides a priori estimates of altitude acclimatization status resulting from the use of various rapid, staged, and graded ascent profiles.
Collapse
Affiliation(s)
- Beth A. Beidleman
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Charles S. Fulco
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Allen Cymerman
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Janet E. Staab
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Mark J. Buller
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Stephen R. Muza
- U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| |
Collapse
|
20
|
Burtscher M, Philadelphy M, Gatterer H, Burtscher J, Faulhaber M, Nachbauer W, Likar R. Physiological Responses in Humans Acutely Exposed to High Altitude (3480 m): Minute Ventilation and Oxygenation Are Predictive for the Development of Acute Mountain Sickness. High Alt Med Biol 2019; 20:192-197. [PMID: 30896981 DOI: 10.1089/ham.2018.0143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of arterial oxygen saturation for the prediction of acute mountain sickness (AMS) is still a matter of debate. Reasons for discrepancies may result from varying laboratory or field conditions and their interactions. Thus, we analyzed data from our prior high-altitude studies, including participants of a broad range of age of both sexes (20 males and 20 females, aged between 20 and 67 years) under strictly standardized conditions of pre-exposure and acute exposure to real high altitude (3480 m). A set of resting cardiovascular, respiratory, hematological, and metabolic variables were recorded at high altitude (Testa Grigia, Plateau Rosa, 3480 m; Swiss-Italian boarder) after performing pretests at low altitude (Innsbruck, 600 m, Austria). Our analyses indicate that (1) smaller changes in resting minute ventilation (VE) and a larger decrease of peripheral oxygen saturation (SpO2) during the first 3 hours of acute exposure to high altitude were independent predictors for subsequent development of AMS (90% correct prediction), (2) there are no differences of responses between sexes, and (3) there is no association of responses with age. Considering the independent effects of both responses (VE and SpO2) may be of clinical/practical relevance. Moreover, the presented data derived from a broad age range of both sexes might be of interest for comparative purposes.
Collapse
Affiliation(s)
- Martin Burtscher
- 1 Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,2 Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | | | - Hannes Gatterer
- 1 Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,3 Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Johannes Burtscher
- 4 Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Faulhaber
- 1 Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,2 Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Werner Nachbauer
- 1 Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Rudolf Likar
- 5 Department of Anesthesiology and Intensive Care Medicine, Klinikum Klagenfurt, Klagenfurt, Austria
| |
Collapse
|
21
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
22
|
Vinnikov D, Nenna R, Soumagne T. Will an electronic nose help at high altitude? Breathe (Sheff) 2018; 14:322-324. [PMID: 30519300 PMCID: PMC6269179 DOI: 10.1183/20734735.019918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An electronic nose does not simply detect the concentrations of selected VOCs in the exhaled air, but verifies the cumulative signature, reflecting the overall VOC concentration. This technology is novel but promising. http://ow.ly/IPCt30mbIBV.
Collapse
Affiliation(s)
- Denis Vinnikov
- School of Public Health, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raffaella Nenna
- Dept of Paediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Thibaud Soumagne
- Dept of Respiratory Medicine, University Hospital, Besançon, France.,Dept of Physiology, University Hospital, Besançon, France
| |
Collapse
|