1
|
Borjigin Q, Zhang B, Yu X, Gao J, Zhang X, Qu J, Ma D, Hu S, Han S. Metagenomics study to compare the taxonomic composition and metabolism of a lignocellulolytic microbial consortium cultured in different carbon conditions. World J Microbiol Biotechnol 2022; 38:78. [PMID: 35325312 DOI: 10.1007/s11274-022-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper). Analyses of the data on metagenomics taxonomic affiliations revealed considerable differences in the taxonomic composition and carbohydrate-active enzymes profile of the microbial consortia CS and FP. Pseudomonas, Dysgonomonas and Sphingobacterium in CS and Cellvibrio and Pseudomonas in FP had a much wider distribution of lignocellulose degradative ability. The genes for more lignocellulose degradative enzymes were detected when the relatively simple substrate filter paper was used as the carbon source. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses revealed considerable levels of similarity, and carbohydrate metabolic and amino acid metabolic pathways were the most enriched in CS and FP, respectively. The mechanism used by the two microbial consortia to degrade lignocellulose was similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. These data underlie the interactions between microorganisms and the synergism of enzymes during the degradative process of lignocellulose under different substrates and suggest the development of potential microbial resources.
Collapse
Affiliation(s)
- Qinggeer Borjigin
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Bizhou Zhang
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No.22, ZhaoJun Road, Hohhot, 010031, China
| | - Xiaofang Yu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Julin Gao
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Xin Zhang
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Jiawei Qu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Daling Ma
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Shuping Hu
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Vocational and Technical College, Inner Mongolia Agricultural University, Altan street, Baotou, 014109, China
| | - Shengcai Han
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Hortlculture and Plant Protection College, Inner Mongolia Agricultural University, No. 29, Eerduosi East Street, Hohhot, 010019, China
| |
Collapse
|
2
|
Akermann A, Weiermüller J, Chodorski JN, Nestriepke MJ, Baclig MT, Ulber R. Optimization of bioprocesses with Brewers' spent grain and Cellulomonas uda. Eng Life Sci 2022; 22:132-151. [PMID: 35382540 PMCID: PMC8961044 DOI: 10.1002/elsc.202100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Brewers' spent grain (BSG) is a low-value by-product of the brewing process, which is produced in large quantities every year. In this study, the lignocellulosic feedstock (solid BSG) was used to optimize fermentations with Cellulomonas uda. Under aerobic conditions, maximum cellulase activities of 0.98 nkat∙mL-1, maximum xylanase activities of 5.00 nkat∙mL-1 and cell yields of 0.22 gCells∙gBSG -1 were achieved. Under anaerobic conditions, enzyme activities and cell yields were lower, but valuable liquid products (organic acids, ethanol) were produced with a yield of 0.41 gProd∙gBSG -1. The growth phase of the organisms was monitored by measuring extracellular concentrations of two fluorophores pyridoxin (aerobic) and tryptophan (anaerobic) and by cell count. By combining reductive with anaerobic conditions, the ratio of ethanol to acetate was increased from 1.08 to 1.59 molEtOH∙molAc -1. This ratio was further improved to 9.2 molEtOH∙molAc -1 by lowering the pH from 7.4 to 5.0 without decreasing the final ethanol concentration. A fermentation in a bioreactor with 15 w% BSG instead of 5 w% BSG quadrupled the acetate concentration, whilst ethanol was removed by gas stripping. This study provides various ideas for optimizing and monitoring fermentations with solid substrates, which can support feasibility and incorporation into holistic biorefining approaches in the future.
Collapse
Affiliation(s)
- Alexander Akermann
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | - Jens Weiermüller
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | | | | | - Maria Teresa Baclig
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| | - Roland Ulber
- TU KaiserslauternDepartment of Mechanical and Process EngineeringKaiserslauternGermany
| |
Collapse
|
4
|
Lisov AV, Belova OV, Lisova ZA, Vinokurova NG, Nagel AS, Andreeva-Kovalevskaya ZI, Budarina ZI, Nagornykh MO, Zakharova MV, Shadrin AM, Solonin AS, Leontievsky AA. Xylanases of Cellulomonas flavigena: expression, biochemical characterization, and biotechnological potential. AMB Express 2017; 7:5. [PMID: 28050845 PMCID: PMC5209306 DOI: 10.1186/s13568-016-0308-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022] Open
Abstract
Four xylanases of Cellulomonas flavigena were cloned, expressed in Escherichia coli and purified. Three enzymes (CFXyl1, CFXyl2, and CFXyl4) were from the GH10 family, while CFXyl3 was from the GH11 family. The enzymes possessed moderate temperature stability and a neutral pH optimum. The enzymes were more stable at alkaline pH values. CFXyl1 and CFXyl2 hydrolyzed xylan to form xylobiose, xylotriose, xylohexaose, xylopentaose, and xylose, which is typical for GH10. CFXyl3 (GH11) and CFXyl4 (GH10) formed the same xylooligosaccharides, but xylose was formed in small amounts. The xylanases made efficient saccharification of rye, wheat and oat, common components of animal feed, which indicates their high biotechnological potential.
Collapse
|
5
|
Wang Y, Xu W, Bai Y, Zhang T, Jiang B, Mu W. Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2110-2119. [PMID: 28240031 DOI: 10.1021/acs.jafc.6b05667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amylosucrase, catalyzing the synthesis of α-(1,4)-glucan from sucrose, has been widely studied and used in carbohydrate biotransformation because of its versatile activities. In this study, a novel amylosucrase was characterized from Cellulomonas carboniz T26. The recombinant enzyme was overexpressed in Escherchia coli and purified by nickel affinity chromatography. It was determined to be a monomeric protein with a molecular mass of 72 kDa. The optimum pH and temperature for transglucosylation were measured to be pH 7.0 and 40 °C. The transglucosylation activity was significantly higher than the hydrolytic activity. The main product generated from sucrose was structurally determined to be α-(1,4)-glucan. A small amount of glucose was produced by hydrolysis, and sucrose isomers including turanose and trehalulose were generated as minor products. The ratio of hydrolytic, polymerization, and isomerization reactions was calculated to be 5.8:84.0:10.2. The enzyme favored production of long-chain insoluble α-glucan at lower temperature.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| |
Collapse
|