1
|
Johansson P, Säde E, Hultman J, Auvinen P, Björkroth J. Pangenome and genomic taxonomy analyses of Leuconostoc gelidum and Leuconostoc gasicomitatum. BMC Genomics 2022; 23:818. [PMID: 36494615 PMCID: PMC9733070 DOI: 10.1186/s12864-022-09032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.
Collapse
Affiliation(s)
- Per Johansson
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Elina Säde
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Björkroth
- grid.7737.40000 0004 0410 2071Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhao X, Xiang F, Tang F, Cai W, Guo Z, Hou Q, Yang X, Song W, Shan C. Bacterial Communities and Prediction of Microbial Metabolic Pathway in Rice Wine Koji From Different Regions in China. Front Microbiol 2022; 12:748779. [PMID: 35046909 PMCID: PMC8762310 DOI: 10.3389/fmicb.2021.748779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023] Open
Abstract
Rice wine koji, a traditional homemade starter culture in China, is nutritious and delicious. The final quality of rice wine koji is closely related to the structure of its microbial community. However, the diversity of natural microorganisms in rice wine koji from different regions has not been evaluated. In this study, the microbial population of 92 naturally fermented rice koji samples collected from Hubei, Guangxi, and Sichuan was systematically analyzed by high-throughput sequencing. From all the rice wine koji samples, 22 phyla and 479 bacterial genera were identified. Weissella, Pediococcus, Lactobacillus, Enterobacter, Lactococcus, Pantoea, Bacillus, Staphylococcus, and Leuconostoc were the dominant genera in rice wine koji. The bacterial community structure of rice wine koji samples from different regions was significantly different (p < 0.05). The bacterial community composition of the samples from Hubei and Guangxi was similar, but significantly different from that of SC samples (p < 0.05). These differences may be caused by variations in geography, environment, or manufacturing. In addition, the results of microbial phenotype prediction by BugBase and bacterial functional potential prediction by PICRUSt showed that eight of the nine predicted phenotypic functions of rice wine koji samples from different regions were significantly different (p < 0.05) and that vigorous bacterial metabolism occurred in rice wine koji samples.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Fanshu Xiang
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, China
| | - Wen Song
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China.,Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Transcriptomic time-series analysis of cold- and heat-shock response in psychrotrophic lactic acid bacteria. BMC Genomics 2021; 22:28. [PMID: 33413101 PMCID: PMC7788899 DOI: 10.1186/s12864-020-07338-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in the microbiota of cold-stored modified-atmosphere-packaged food products and are the main cause of food spoilage. Despite the importance of psychrotrophic LAB, their response to cold or heat has not been studied. Here, we studied the transcriptome-level cold- and heat-shock response of spoilage lactic acid bacteria with time-series RNA-seq for Le. gelidum, Lc. piscium, and P. oligofermentans at 0 °C, 4 °C, 14 °C, 25 °C, and 28 °C. RESULTS We observed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene in all three species. Our results indicated that DEAD-box RNA helicase genes (cshA, cshB) also play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, indicating that these genes could be part of the cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species. We identified transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. CONCLUSIONS The results of this study provide new insights on the cold- and heat-shock response of psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as targets for future studies.
Collapse
|
5
|
Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019; 10:2916. [PMID: 31956321 PMCID: PMC6951406 DOI: 10.3389/fmicb.2019.02916] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus thermophilus is a major starter for the dairy industry with great economic importance. In this study we analyzed 23 fully sequenced genomes of S. thermophilus to highlight novel aspects of the evolution, biology and technological properties of this species. Pan/core genome analysis revealed that the species has an important number of conserved genes and that the pan genome is probably going to be closed soon. According to whole genome phylogeny and average nucleotide identity (ANI) analysis, most S. thermophilus strains were grouped in two major clusters (i.e., clusters A and B). More specifically, cluster A includes strains with chromosomes above 1.83 Mbp, while cluster B includes chromosomes below this threshold. This observation suggests that strains belonging to the two clusters may be differentiated by gene gain or gene loss events. Furthermore, certain strains of cluster A could be further subdivided in subgroups, i.e., subgroup I (ASCC 1275, DGCC 7710, KLDS SM, MN-BM-A02, and ND07), II (MN-BM-A01 and MN-ZLW-002), III (LMD-9 and SMQ-301), and IV (APC151 and ND03). In cluster B certain strains formed one distinct subgroup, i.e., subgroup I (CNRZ1066, CS8, EPS, and S9). Clusters and subgroups observed for S. thermophilus indicate the existence of lineages within the species, an observation which was further supported to a variable degree by the distribution and/or the architecture of several genomic traits. These would include exopolysaccharide (EPS) gene clusters, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-CRISPR associated (Cas) systems, as well as restriction-modification (R-M) systems and genomic islands (GIs). Of note, the histidine biosynthetic cluster was found present in all cluster A strains (plus strain NCTC12958T) but was absent from all strains in cluster B. Other loci related to lactose/galactose catabolism and urea metabolism, aminopeptidases, the majority of amino acid and peptide transporters, as well as amino acid biosynthetic pathways were found to be conserved in all strains suggesting their central role for the species. Our study highlights the necessity of sequencing and analyzing more S. thermophilus complete genomes to further elucidate important aspects of strain diversity within this starter culture that may be related to its application in the dairy industry.
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
6
|
Poirier S, Rué O, Peguilhan R, Coeuret G, Zagorec M, Champomier-Vergès MC, Loux V, Chaillou S. Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3-V4 amplicon sequencing. PLoS One 2018; 13:e0204629. [PMID: 30252901 PMCID: PMC6155546 DOI: 10.1371/journal.pone.0204629] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Meat and seafood spoilage ecosystems harbor extensive bacterial genomic diversity that is mainly found within a small number of species but within a large number of strains with different spoilage metabolic potential. To decipher the intraspecies diversity of such microbiota, traditional metagenetic analysis using the 16S rRNA gene is inadequate. We therefore assessed the potential benefit of an alternative genetic marker, gyrB, which encodes the subunit B of DNA gyrase, a type II DNA topoisomerase. A comparison between 16S rDNA-based (V3-V4) amplicon sequencing and gyrB-based amplicon sequencing was carried out in five types of meat and seafood products, with five mock communities serving as quality controls. Our results revealed that bacterial richness in these mock communities and food samples was estimated with higher accuracy using gyrB than using16S rDNA. However, for Firmicutes species, 35% of putative gyrB reads were actually identified as sequences of a gyrB paralog, parE, which encodes subunit B of topoisomerase IV; we therefore constructed a reference database of published sequences of both gyrB and pare for use in all subsequent analyses. Despite this co-amplification, the deviation between relative sequencing quantification and absolute qPCR quantification was comparable to that observed for 16S rDNA for all the tested species. This confirms that gyrB can be used successfully alongside 16S rDNA to determine the species composition (richness and evenness) of food microbiota. The major benefit of gyrB sequencing is its potential for improving taxonomic assignment and for further investigating OTU richness at the subspecies level, thus allowing more accurate discrimination of samples. Indeed, 80% of the reads of the 16S rDNA dataset were represented by thirteen 16S rDNA-based OTUs that could not be assigned at the species-level. Instead, these same clades corresponded to 44 gyrB-based OTUs, which differentiated various lineages down to the subspecies level. The increased ability of gyrB-based analyses to track and trace phylogenetically different groups of strains will generate improved resolution and more reliable results for studies of the strains implicated in food processes.
Collapse
Affiliation(s)
- Simon Poirier
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Rué
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphaëlle Peguilhan
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gwendoline Coeuret
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Valentin Loux
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stéphane Chaillou
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Food Spoilage-Associated Leuconostoc, Lactococcus, and Lactobacillus Species Display Different Survival Strategies in Response to Competition. Appl Environ Microbiol 2018; 84:AEM.00554-18. [PMID: 29678911 DOI: 10.1128/aem.00554-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
Psychrotrophic lactic acid bacteria (LAB) are the prevailing spoilage organisms in packaged cold-stored meat products. Species composition and metabolic activities of such LAB spoilage communities are determined by the nature of the meat product, storage conditions, and interspecies interactions. Our knowledge of system level responses of LAB during such interactions is very limited. To expand it, we studied interactions between three common psychrotrophic spoilage LAB (Leuconostoc gelidum, Lactococcus piscium, and Lactobacillus oligofermentans) by comparing their time course transcriptome profiles obtained during their growth in individual, pairwise, and triple cultures. The study revealed how these LAB employed different strategies to cope with the consequences of interspecies competition. The fastest-growing bacterium, Le. gelidum, attempted to enhance its nutrient-scavenging and growth capabilities in the presence of other LAB through upregulation of carbohydrate catabolic pathways, pyruvate fermentation enzymes, and ribosomal proteins, whereas the slower-growing Lc. piscium and Lb. oligofermentans downregulated these functions. These findings may explain the competitive success and predominance of Le. gelidum in a variety of spoiled foods. Peculiarly, interspecies interactions induced overexpression of prophage genes and restriction modification systems (mechanisms of DNA exchange and protection against it) in Lc. piscium and Lb. oligofermentans but not in Le. gelidum Cocultivation induced also overexpression of the numerous putative adhesins in Lb. oligofermentans These adhesins might contribute to the survival of this slowly growing bacterium in actively growing meat spoilage communities.IMPORTANCE Despite the apparent relevance of LAB for biotechnology and human health, interactions between members of LAB communities are not well known. Knowledge of such interactions is crucial for understanding how these communities function and, consequently, whether there is any possibility to develop new strategies to interfere with their growth and to postpone spoilage of packaged and refrigerated foods. With the help of controlled experiments, detailed regulation events can be observed. This study gives an insight into the system level interactions and the different competition-induced survival strategies related to enhanced uptake and catabolism of carbon sources, overexpression of adhesins and putative bacteriocins, and the induction of exchange of genetic material. Even though this experiment dealt with only three LAB strains in vitro, these findings agreed well with the relative abundance patterns typically reported for these species in natural food microbial communities.
Collapse
|
8
|
Chun BH, Lee SH, Jeon HH, Kim DW, Jeon CO. Complete genome sequence of Leuconostoc suionicum DSM 20241 T provides insights into its functional and metabolic features. Stand Genomic Sci 2017; 12:38. [PMID: 28725337 PMCID: PMC5514465 DOI: 10.1186/s40793-017-0256-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
The genome of Leuconostoc suionicum DSM 20241T (=ATCC 9135T = LMG 8159T = NCIMB 6992T) was completely sequenced and its fermentative metabolic pathways were reconstructed to investigate the fermentative properties and metabolites of strain DSM 20241T during fermentation. The genome of L. suionicum DSM 20241T consists of a circular chromosome (2026.8 Kb) and a circular plasmid (21.9 Kb) with 37.58% G + C content, encoding 997 proteins, 12 rRNAs, and 72 tRNAs. Analysis of the metabolic pathways of L. suionicum DSM 20241T revealed that strain DSM 20241T performs heterolactic acid fermentation and can metabolize diverse organic compounds including glucose, fructose, galactose, cellobiose, mannose, sucrose, trehalose, arbutin, salcin, xylose, arabinose and ribose.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hye Hee Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| | - Dong-Woon Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeollabukdo, 55365 Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
9
|
Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci Rep 2016; 6:32524. [PMID: 27578483 PMCID: PMC5006176 DOI: 10.1038/srep32524] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.
Collapse
|