1
|
Van Dingenen J, Garcia Mendez S, Beirinckx S, Vlaminck L, De Keyser A, Stuer N, Verschaete S, Clarysse A, Pannecoucque J, Rombauts S, Roldan-Ruiz I, Willems A, Goormachtig S. Flemish soils contain rhizobia partners for Northwestern Europe-adapted soybean cultivars. Environ Microbiol 2022; 24:3334-3354. [PMID: 35212122 DOI: 10.1111/1462-2920.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
In Europe, soybean (Glycine max) used for food and feed has to be imported, causing negative socioeconomic and environmental impacts. To increase the local production, breeding generated varieties that grow in colder climates, but the yield using the commercial inoculants is not satisfactory in Belgium because of variable nodulation efficiencies. To look for indigenous nodulating strains possibly adapted to the local environment, we initiated a nodulation trap by growing early-maturing cultivars under natural and greenhouse conditions in 107 garden soils in Flanders. Nodules occurred in 18 and 21 soils in the garden and greenhouse experiments respectively. By combining 16S rRNA PCR on single isolates with HiSeq 16S metabarcoding on nodules, we found a large bacterial richness and diversity from different soils. Furthermore, using Oxford Nanopore Technologies sequencing of DNA from one nodule, we retrieved the entire genome of a Bradyrhizobium species, not previously isolated, but profusely present in that nodule. These data highlight the need of combining diverse identification techniques to capture the true nodule rhizobial community. Eight selected rhizobial isolates were subdivided by whole-genome analysis in three genera containing six genetically distinct species that, except for two, aligned with known type strains and were all able to nodulate soybean in the laboratory.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Sonia Garcia Mendez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, 9000, Belgium
| | - Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Lena Vlaminck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Severine Verschaete
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Alexander Clarysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Joke Pannecoucque
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, 9820, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Isabel Roldan-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, 9820, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, 9000, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| |
Collapse
|
2
|
Klepa MS, Helene LCF, O´Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium
is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains – CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T – previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the
Bradyrhizobium elkanii
supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes – atpD, dnaK, glnII, gyrB, recA and rpoB – did not cluster the strains under study as conspecific to any described
Bradyrhizobium
species. Average nucleotide identity and digital DNA–DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed
Bradyrhizobium
species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O´Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Hsouna J, Gritli T, Ilahi H, Ellouze W, Mansouri M, Chihaoui SA, Bouhnik O, Missbah El Idrissi M, Abdelmoumen H, Wipf D, Courty PE, Bekki A, Tambong JT, Mnasri B. Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 2022; 45:126343. [PMID: 35759954 DOI: 10.1016/j.syapm.2022.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. "salignae" is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. "cyanophyllae" is proposed. Isolates formed effective nodules on A. saligna.
Collapse
Affiliation(s)
- Jihed Hsouna
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland Station, Ontario L0R 2E0, Canada.
| | - Maroua Mansouri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Omar Bouhnik
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Daniel Wipf
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Abdelkader Bekki
- Laboratory of Rhizobia Biotechnology and Plant Breeding, University Oran1, Es Senia 31000, Algeria
| | - James T Tambong
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia.
| |
Collapse
|
4
|
Sun L, Zhang Z, Dong X, Tang Z, Ju B, Du Z, Wang E, Xie Z. Bradyrhizobium aeschynomenes sp. nov., a root and stem nodule microsymbiont of Aeschynomene indica. Syst Appl Microbiol 2022; 45:126337. [DOI: 10.1016/j.syapm.2022.126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
5
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Muasya MA, Avontuur JR, Yin Chan W, Venter SN, Steenkamp ET. Delineation of Paraburkholderia tuberum sensu stricto and description of Paraburkholderia podalyriae sp. nov. nodulating the South African legume Podalyria calyptrata. Syst Appl Microbiol 2022; 45:126316. [DOI: 10.1016/j.syapm.2022.126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
6
|
Pedron R, Luchi E, Albiac MA, Di Cagno R, Catorci D, Esposito A, Bianconi I, Losa D, Cristofolini M, Guella G, Jousson O. Mesorhizobium comanense sp. nov., isolated from groundwater. Int J Syst Evol Microbiol 2021; 71. [PMID: 34870580 DOI: 10.1099/ijsem.0.005131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain 3P27G6T was isolated from an artesian well connected to the thermal water basin of Comano Terme, Province of Trento, Italy. In phylogenetic analyses based on multilocus sequence analysis, strain 3P27G6T clustered together with Mesorhizobium australicum WSM2073T. Genome sequencing produced a 99.51 % complete genome, with a length of 7 363 057 bp and G+C content of 63.53 mol%, containing 6897 coding sequences, 55 tRNA and three rRNA. Average nucleotide identity analysis revealed that all distances calculated between strain 3P27G6T and the other Mesorhizobium genomes were below 0.9, indicating that strain 3P27G6T represents a new species. Therefore, we propose the name Mesorhizobium comanense sp. nov. with the type strain 3P27G6T (=DSM 110654T=CECT 30067T). Strain 3P27G6T is a Gram-negative, rod-shaped, aerobic bacterium. Growth condition, antibiotic susceptibility, metabolic and fatty acid-methyl esters profiles of the strain were determined. Only few nodulation and nitrogen fixation genes were found in the genome, suggesting that this strain may not be specialized in nodulation or in nitrogen fixation.
Collapse
Affiliation(s)
- Renato Pedron
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Elena Luchi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Marta Acin Albiac
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Daniele Catorci
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy.,Department of Physics, University of Trento, 38123 Trento, Italy
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Irene Bianconi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Davide Losa
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | | | - Graziano Guella
- Department of Physics, University of Trento, 38123 Trento, Italy
| | - Olivier Jousson
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
7
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T, van Zyl E, Coetzee MPA, Stepkowski T, Venter SN, Steenkamp ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2021; 167:107338. [PMID: 34757168 DOI: 10.1016/j.ympev.2021.107338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa
| | - Taponeswa Tasiya
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stepkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Toniutti MA, Albicoro FJ, Castellani LG, López García SL, Fornasero LV, Zuber NE, Vera LM, Vacca C, Cafiero JH, Winkler A, Kalinowski J, Lagares A, Torres Tejerizo GA, Del Papa MF. Genome sequence of Bradyrhizobium yuanmingense strain P10 130, a highly efficient nitrogen-fixing bacterium that could be used for Desmodium incanum inoculation. Gene 2020; 768:145267. [PMID: 33122079 DOI: 10.1016/j.gene.2020.145267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/08/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Strain P10 130, an isolated Bradyrhizobium strain from Argentina which promotes the growth of the leguminous plant Desmodium incanum by different mechanisms was previously selected as the best candidate for D. incanum inoculation based on broader selective criteria. A close relationship between this strain and B. yuanmingense was determined by MALDI BioTyper identification and 16S rRNA gene phylogenetic analysis. This study aimed to analyse the genome sequence of B. yuanmingense P10 130 in order to deepen our knowledge regarding its plant growth-promoting traits and to establish its phylogenetic relationship with other species of Bradyrhizobium genus. The genome size of strain P10 130 was estimated to be 7.54 Mb that consisted of 65 contigs. Genome Average Nucleotide Identity (ANI) analysis revealed that B. yuanmingense CCBAU 10071 T was the closest strain to P10 130 with ca. 96% identity. Further analysis of the genome of B. yuanmingense P10 130 identified 20 nod/nol/NOE, 14 nif/18 fix, 5 nap/5 nor genes, which may be potentially involved in nodulation, nitrogen fixation, and denitrification process respectively. Genome sequence of B. yuanmingense P10 130 is a valuable source of information to continue the research of its potential industrial production as a biofertilizer of D. incanum.
Collapse
Affiliation(s)
| | - Francisco Javier Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Lucas Gabriel Castellani
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Silvina Laura López García
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | | | - Nicolás Emilio Zuber
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Leda Mailén Vera
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Carolina Vacca
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Juan Hilario Cafiero
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Anika Winkler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Antonio Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Gonzalo Arturo Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina.
| | - María Florencia Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina.
| |
Collapse
|
9
|
Abstract
Osseointegrated dental implants are a revolutionary tool in the armament of reconstructive dentistry, employed to replace missing teeth and restore masticatory, occlusal, and esthetic functions. Like natural teeth, the orally exposed part of dental implants offers a pristine nonshedding surface for salivary pellicle-mediated microbial adhesion and biofilm formation. In early colonization stages, these bacterial communities closely resemble those of healthy periodontal sites, with lower diversity. Because the peri-implant tissues are more susceptible to endogenous oral infections, understanding of the ecological triggers that underpin the microbial pathogenesis of peri-implantitis is central to developing improved prevention, diagnosis, and therapeutic strategies. The advent of next-generation sequencing (NGS) technologies, notably applied to 16S ribosomal RNA gene amplicons, has enabled the comprehensive taxonomic characterization of peri-implant bacterial communities in health and disease, revealing a differentially abundant microbiota between these 2 states, or with periodontitis. With that, the peri-implant niche is highlighted as a distinct ecosystem that shapes its individual resident microbial community. Shifts from health to disease include an increase in diversity and a gradual depletion of commensals, along with an enrichment of classical and emerging periodontal pathogens. Metatranscriptomic profiling revealed similarities in the virulence characteristics of microbial communities from peri-implantitis and periodontitis, nonetheless with some distinctive pathways and interbacterial networks. Deeper functional assessment of the physiology and virulence of the well-characterized microbial communities of the peri-implant niche will elucidate further the etiopathogenic mechanisms and drivers of the disease.
Collapse
Affiliation(s)
- G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - D Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
10
|
Martins da Costa E, Almeida Ribeiro PR, Soares de Carvalho T, Pereira Vicentin R, Balsanelli E, Maltempi de Souza E, Lebbe L, Willems A, de Souza Moreira FM. Efficient Nitrogen-Fixing Bacteria Isolated from Soybean Nodules in the Semi-arid Region of Northeast Brazil are Classified as Bradyrhizobium brasilense (Symbiovar Sojae). Curr Microbiol 2020; 77:1746-1755. [PMID: 32322907 DOI: 10.1007/s00284-020-01993-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Soybean (Glycine max L.) is an important legume that greatly benefits from inoculation with nitrogen-fixing bacteria. In a previous study, five efficient nitrogen-fixing bacterial strains, isolated from nodules of soybean inoculated with soil from semi-arid region, Northeast Brazil, were identified as a new group within the genus Bradyrhizobium. The taxonomic status of these strains was evaluated in this study. The phylogenetic analysis of the 16S rRNA gene showed the high similarity of the five strains to Bradyrhizobium brasilense UFLA03-321T (100%), B. pachyrhizi PAC48T (100%), B. ripae WR4T (100%), B. elkanii USDA 76T (99.91%), and B. macuxiense BR 10303T (99.91%). However, multilocus sequence analysis of the housekeeping genes atpD, dnaK, gyrB, recA, and rpoB, average nucleotide identity, and digital DNA-DNA hybridization analyses supported the classification of the group as B. brasilense. Some phenotypic characteristics allowed differentiating the five strains and the type strain of B. brasilense from the two neighboring species (B. pachyrhizi PAC48T and B. elkanii USDA 76T). The nodC and nifH genes' analyses showed that these strains belong to symbiovar sojae, together with B. elkanii (USDA 76T) and B. ferriligni (CCBAU 51502T). The present results support the classification of these five strains as Bradyrhizobium brasilense (symbiovar sojae).
Collapse
Affiliation(s)
- Elaine Martins da Costa
- Departamento de Ciência Do Solo, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
- Universidade Federal Do Piauí, Campus Professora Cinobelina Elvas, Bom Jesus, Piauí, 64900-000, Brazil
| | - Paula R Almeida Ribeiro
- Departamento de Ciência Do Solo, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | | | - Rayssa Pereira Vicentin
- Departamento de Ciência Do Solo, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Paraná, 81531990, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Paraná, 81531990, Brazil
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | | |
Collapse
|
11
|
Urquiaga MCDO, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM, Hungria M. Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro. Int J Syst Evol Microbiol 2019; 69:3863-3877. [PMID: 31486763 DOI: 10.1099/ijsem.0.003697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The symbioses between legumes and nitrogen-fixing rhizobia make the greatest contribution to the global nitrogen input via the process of biological nitrogen fixation (BNF). Bradyrhizobium stands out as the main genus nodulating basal Caesalpinioideae. We performed a polyphasic study with 11 strains isolated from root nodules of Chamaecristafasciculata, an annual multi-functional native legume of the USA. In the 16S rRNA gene phylogeny the strains were clustered in the Bradyrhizobium japonicumsuperclade. The results of analysis of the intergenic transcribed spacer (ITS) indicated less than 89.9 % similarity to other Bradyrhizobium species. Multilocus sequence analysis (MLSA) with four housekeeping genes (glnII, gyrB, recA and rpoB) confirmed the new group, sharing less than 95.2 % nucleotide identity with other species. The MLSA with 10 housekeeping genes (atpD, dnaK, gap, glnII, gltA, gyrB, pnp, recA, rpoB and thrC) indicated Bradyrhizobium daqingense as the closest species. Noteworthy, high genetic diversity among the strains was confirmed in the analyses of ITS, MLSA and BOX-PCR. Average nucleotide identity and digital DNA-DNA hybridization values were below the threshold of described Bradyrhizobium species, of 89.7 and 40 %, respectively. In the nifH and nodC phylogenies, the strains were grouped together, but with an indication of horizontal gene transfer, showing higher similarity to Bradyrhizobium arachidis and Bradyrhizobium forestalis. Other phenotypic, genotypic and symbiotic properties were evaluated, and the results altogether support the description of the CNPSo strains as representatives of the new species Bradyrhizobiumfrederickii sp. nov., with CNPSo 3426T (=USDA 10052T=U686T=CL 20T) as the type strain.
Collapse
Affiliation(s)
- Maria Clara de Oliveira Urquiaga
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes 70.040-020 Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, 86057970, Londrina, Paraná, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes 70.040-020 Brasília, Distrito Federal, Brazil
| | | | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil
| | - Jakeline Renata Marcon Delamuta
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, 86057970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul 71605-001 Brasília, Distrito Federal, Brazil
| |
Collapse
|
12
|
Klepa MS, Urquiaga MCDO, Somasegaran P, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA. Int J Syst Evol Microbiol 2019; 69:3448-3459. [DOI: 10.1099/ijsem.0.003640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Milena Serenato Klepa
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
| | - Maria Clara de Oliveira Urquiaga
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | | | - Jakeline Renata Marçon Delamuta
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Brazil
| | - Mariangela Hungria
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
13
|
Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841-2848. [PMID: 31251718 DOI: 10.1099/ijsem.0.003569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated 39S1MBT, isolated from a root nodule of a soybean plant that had been inoculated with root-zone soil of Amphicarpaea bracteata (hog peanut) growing in Canada, was previously characterized and placed in a novel lineage within the genus Bradyrhizobium. The taxonomic status of strain 39S1MBT was verified by genomic and phenotypic analyses. Phylogenetic analyses of individual and concatenated protein-encoding gene sequences (atpD, glnII, recA, gyrB and rpoB) placed 39S1MBT in a lineage distinct from named species. Data for sequence similarities of concatenated genes relative to type strains of named species supported the phylogenetic data. Average nucleotide identity values of genome sequences (84.5-91.7 %) were well below the threshold value for bacterial species circumscription. Based on these data, Bradyrhizobium ottawaense OO99T and Bradyrhizobium shewense ERR11T are close relatives of 39S1MBT. The complete genome of 39S1MBT consists of a single 7.04 Mbp chromosome without a symbiosis island; G+C content is 64.7 mol%. Present in the genome are key photosystem and nitrogen-fixation genes, but not nodulation and type III secretion system genes. Sequence analysis of the nitrogen fixation gene, nifH, placed 39S1MBT in a novel lineage distinct from named Bradyrhizobium species. Data for phenotypic tests including growth characteristics and carbon source utilization supported the sequence-based analyses. Based on the data presented here, a novel species with the name Bradyrhizobium amphicarpaeae sp. nov. is proposed with 39S1MBT (=LMG 29934T=HAMBI 3680T) as the type strain.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Hai D T Nguyen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
14
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
15
|
Insights into the Phylogeny, Nodule Function, and Biogeographic Distribution of Microsymbionts Nodulating the Orphan Kersting's Groundnut [ Macrotyloma geocarpum (Harms) Marechal & Baudet] in African Soils. Appl Environ Microbiol 2019; 85:AEM.00342-19. [PMID: 30952658 PMCID: PMC6532025 DOI: 10.1128/aem.00342-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] is a neglected indigenous African legume adapted to growth in N-deficient soils due to its ability to fix atmospheric N2 via symbiosis with rhizobia. Despite its nutritional and medicinal uses, to date there is little information on the phylogeny and functional traits of its microsymbionts, aspects that are much needed for its conservation and improvement. This study explored the morphogenetic diversity, phylogenetic relationships, and N2-fixing efficiency of Kersting's groundnut rhizobial isolates from contrasting environments in Ghana, South Africa, and Mozambique. BOX-PCR fingerprinting revealed high diversity among the rhizobial populations, which was influenced by geographic origin. Of the 164 isolates evaluated, 130 BOX-PCR types were identified at a 70% similarity coefficient, indicating that they were not clones. Soil pH and mineral concentrations were found to influence the distribution of bradyrhizobial populations in African soils. Phylogenetic analysis of 16S rRNA genes and multilocus sequence analysis of protein-coding genes (atpD, glnII, gyrB, and rpoB) and symbiotic genes (nifH and nodC) showed that Kersting's groundnut is primarily nodulated by members of the genus Bradyrhizobium, which are closely related to Bradyrhizobium vignae 7-2T, Bradyrhizobium kavangense 14-3T, Bradyrhizobium subterraneum 58-2-1T, Bradyrhizobium pachyrhizi PAC48T, the type strain of Bradyrhizobium elkanii, and novel groups of Bradyrhizobium species. The bradyrhizobial populations identified exhibited high N2 fixation and induced greater nodulation, leaf chlorophyll concentration, and photosynthetic rates in their homologous host than did the 5 mM KNO3-fed plants and/or the commercial Bradyrhizobium sp. strain CB756, suggesting that they could be good candidates for inoculant formulations upon field testing.IMPORTANCE Rhizobia play important roles in agroecosystems, where they contribute to improving overall soil health through their symbiotic relationship with legumes. This study explored the microsymbionts nodulating Kersting's groundnut, a neglected orphan legume. The results revealed the presence of different bradyrhizobial populations with high N2-fixing efficiencies as the dominant symbionts of this legume across diverse agroecologies in Africa. Our findings represent a useful contribution to the literature in terms of the community of microsymbionts nodulating a neglected cultivated legume and its potential for elevation as a major food crop. The presence of potentially novel bradyrhizobial symbionts of Kersting's groundnut found in this study offers an opportunity for future studies to properly describe, characterize, and delineate these isolates functionally and phylogenetically for use in inoculant production to enhance food/nutritional security.
Collapse
|
16
|
Jaiswal SK, Dakora FD. Widespread Distribution of Highly Adapted Bradyrhizobium Species Nodulating Diverse Legumes in Africa. Front Microbiol 2019; 10:310. [PMID: 30853952 PMCID: PMC6395442 DOI: 10.3389/fmicb.2019.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Bradyrhizobium is one of the most cosmopolitan and diverse bacterial group nodulating a variety of host legumes in Africa, however, the diversity and distribution of bradyrhizobial symbionts nodulating indigenous African legumes are not well understood, though needed for increased food legume production. In this review, we have shown that many African food legumes are nodulated by bradyrhizobia, with greater diversity in Southern Africa compared to other parts of Africa. From a few studies done in Africa, the known bradyrhizobia (i.e., Bradyrhizobium elkanii, B. yuanmingense) along with many novel Bradyrhizobium species are the most dominant in African soils. This could be attributed to the unique edapho-climatic conditions of the contrasting environments in the continent. More studies are needed to identify the many novel bradyrhizobia resident in African soils in order to better understand the biogeography of bradyrhizobia and their potential for inoculant production.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
17
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Grönemeyer JL, Reinhold-Hurek B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front Microbiol 2018; 9:2194. [PMID: 30294308 PMCID: PMC6158577 DOI: 10.3389/fmicb.2018.02194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Making use of biological nitrogen fixation (BNF) with pulses and green manure legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Here we discuss global species discovery of Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium species is rapidly increasing, their diversity in SSA is not well-represented. We summarize the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage to which most SSA isolates belong, and their biogeographic distribution and adaptations. Most indigenous rhizobia appear to differ from species found on other continents. We stress that an as yet hidden diversity may be a rich resource for inoculant development in future. As some species are exceptionally temperature tolerant, they may be potential biofertilizer candidates for global warming scenarios.
Collapse
Affiliation(s)
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:693-694. [PMID: 29493486 DOI: 10.1099/ijsem.0.002570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|