1
|
Hokajärvi AM, Tiwari A, Räsänen P, Wessels L, Rankinen K, Juntunen J, Grootens RJF, Kuronen H, Vepsäläinen A, Miettinen IT, Huttula T, Pitkänen T. Campylobacter species, Salmonella serotypes and ribosomal RNA-based fecal source tracking in the Kokemäki River watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176559. [PMID: 39362549 DOI: 10.1016/j.scitotenv.2024.176559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Fecal contamination of surface water compromises the usability of surface water for drinking water production due to an increase in human health risks. In this study, we collected surface water samples for two years from the Kokemäki River (Finland). The downstream river stretch is used for feeding production of artificial ground water for a major drinking water treatment plant. The prevalence of Campylobacter species and Salmonella serotypes together with fecal source identifiers targeting general, human, gull, swine, and ruminant were evaluated at 16 sampling sites throughout the studied watershed. We detected Campylobacter spp. from all 16 sampling sites with Campylobacter jejuni and Campylobacter lari as the most detected species. Salmonella spp. was detected in 10 out of 16 sampling sites, with Salmonella Typhimurium being the most common serovar. Regarding spatial variation in the hygienic quality of surface water, the upstream area (urban proximity) and downstream area (agricultural proximity) had higher microbial loads than the middle section of the study area. Samples taken in fall and spring had higher microbial loads than summer and winter samples. The lower ratio of rRNA to rRNA-gene (rDNA) of studied microbes in the winter than in other seasons may indicate low metabolic activity of bacterial targets during winter. The number of gulls, swine, and cattle in the catchment area concorded with the number of fecal source identifiers in the surface water. Further, the prevalence of gull-specific source identifier agreed with the detection of C. coli, C. lari, and S. Typhimurim, whereas the prevalence of swine- and ruminant-specific source identifiers agreed with the detection of C. jejuni and C. coli. Thus, fecal source identifiers are shown to be important tools for monitoring zoonotic pathogens affecting microbial quality of surface water. Further, variation in fecal loads indicates such variation in health risks related to surface water use.
Collapse
Affiliation(s)
| | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland; University of Helsinki, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki, Finland
| | - Pia Räsänen
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| | - Laura Wessels
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| | - Katri Rankinen
- Finnish Environment Institute (Syke), Latokartanonkaari 11, Helsinki, Finland
| | - Janne Juntunen
- Finnish Environment Institute (Syke), Survontie 9 A, Jyväskylä, Finland
| | | | - Henry Kuronen
- Finnish Food Authority, Neulaniementie 4, Kuopio, Finland
| | - Asko Vepsäläinen
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland; Aalto University, Water and Environmental Engineering, Tietotie 1E, Espoo, Finland
| | - Timo Huttula
- Finnish Environment Institute (Syke), Survontie 9 A, Jyväskylä, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland; University of Helsinki, Department of Food Hygiene and Environmental Health, Agnes Sjöbergin katu 2, Helsinki, Finland
| |
Collapse
|
2
|
Karamati N E, Law I, Weese JS, McCarthy DT, Murphy HM. Passive sampling of microbes in various water sources: A systematic review. WATER RESEARCH 2024; 266:122284. [PMID: 39353231 DOI: 10.1016/j.watres.2024.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
Traditional methods for monitoring pathogens in environmental waters have numerous drawbacks. Sampling approaches that are low-cost and time efficient that can capture temporal variation in microbial contamination are needed. Passive sampling of aquatic environments has shown promise as an alternative water monitoring technique for waterborne pathogens and microbial contaminants. The present systematic review aimed to compile and synthesize existing literature on the use of passive samplers for the monitoring of microbes in different water sources and identify research gaps. The review summarizes current knowledge on materials used for detection, deployment durations, analytical methods, quantification as well as benefits and limitations of passive sampling. This review found that electronegative nitrocellulose membrane filters are effective for both detection and quantification of viruses in wastewater, while gauze passive samplers have been effective for detecting bacterial targets in wastewater. There is a large knowledge gap in the use of passive samplers in a quantitative manner, especially for the back-calculation of water-column microbial concentrations or for correlation to outcomes of interest (e.g. prevalence rates). Further, there is very limited attention paid to the use of membrane filters for the monitoring of bacteria in any water source as well as a lack of studies utilizing passive sampling approaches for protozoa.
Collapse
Affiliation(s)
- Elnaz Karamati N
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia
| | - Ilya Law
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia
| | - Heather M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Scaccia N, da Silva Fonseca JV, Megueya AL, de Aragão GL, Rasolofoarison T, de Paula AV, de Vinci Kanda Kupa L, Tchatchueng J, Makuetche K, Rasolojaona TZ, Rasamoelina T, Razzolini MTP, Duarte NJC, Mendes-Correa MC, Samison LH, Guimaraes T, Sabino EC, Komurian-Pradel F, Nzouankeu A, Costa SF. Analysis of chlorhexidine, antibiotics and bacterial community composition in water environments from Brazil, Cameroon and Madagascar during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173016. [PMID: 38723967 DOI: 10.1016/j.scitotenv.2024.173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The widespread of chlorhexidine and antibiotics in the water bodies, which grew during the global COVID-19 pandemic, can increase the dispersion of antibiotic resistance. We assessed the occurrence of these pharmaceutical compounds as well as SARS-CoV-2 and analysed the bacterial community structure of hospital and urban wastewaters from Brazil, Cameroon, and Madagascar. Water and wastewater samples (n = 59) were collected between January-June 2022. Chlorhexidine, azithromycin, levofloxacin, ceftriaxone, gentamicin and meropenem were screened by Ultra-High-Performance Liquid Chromatography coupled with mass spectrometer. SARS-CoV-2 was detected based on the nucleocapsid gene (in Cameroon and Madagascar), and envelope and spike protein-encoding genes (in Brazil). The total community-DNA was extracted and used for bacterial community analysis based on the 16S rRNA gene. To unravel likely interaction between pharmaceutical compounds and/or SARS-CoV-2 with the water bacterial community, multivariate statistics were performed. Chlorhexidine was found in hospital wastewater effluent from Brazil with a maximum concentration value of 89.28 μg/L. Additionally, antibiotic residues such as azithromycin and levofloxacin were also present at concentrations between 0.32-7.37 μg/L and 0.11-118.91 μg/L, respectively. In Cameroon, azithromycin was the most found antibiotic present at concentrations from 1.14 to 1.21 μg/L. In Madagascar instead, ceftriaxone (0.68-11.53 μg/L) and levofloxacin (0.15-0.30 μg/L) were commonly found. The bacterial phyla statistically significant different (P < 0,05) among participating countries were Proteobacteria, Patescibacteria and Dependentiae which were mainly abundant in waters sampled in Africa and, other phyla such as Firmicutes, Campylobacterota and Fusobacteriota were more abundant in Brazil. The phylum Caldisericota was only found in raw hospital wastewater samples from Madagascar. The canonical correspondence analysis results suggest significant correlation of azithromycin, meropenem and levofloxacin with bacteria families such as Enterococcaceae, Flavobacteriaceae, Deinococcaceae, Thermacetogeniaceae and Desulfomonilaceae, Spirochaetaceae, Methanosaetaceae, Synergistaceae, respectively. Water samples were also positive for SARS-CoV-2 with the lowest number of hospitalized COVID-19 patients in Madagascar (n = 7) and Brazil (n = 30). Our work provides new data about the bacterial community profile and the presence of pharmaceutical compounds in the hospital effluents from Brazil, Cameroon, and Madagascar, whose limited information is available. These compounds can exacerbate the spreading of antibiotic resistance and therefore pose a risk to public health.
Collapse
Affiliation(s)
- Nazareno Scaccia
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil.
| | - Joyce Vanessa da Silva Fonseca
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Armelle Leslie Megueya
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Gabrielly Lacerda de Aragão
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Tiavina Rasolofoarison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Anderson Vicente de Paula
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Léonard de Vinci Kanda Kupa
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Jules Tchatchueng
- Department of Epidemiology, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Kévine Makuetche
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Tahiry Z Rasolojaona
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Tahinamandranto Rasamoelina
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Maria Tereza Pepe Razzolini
- School of Public Health of University of São Paulo, Av. Dr. Arnaldo, 715, 01246-904 Cerqueira César, São Paulo, Brazil
| | - Nilo José Coelho Duarte
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Maria Cássia Mendes-Correa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Luc Hervé Samison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Thais Guimaraes
- Infection Control Committee Hospital das clínicas, Faculty of Medicine, University of São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | | | - Ariane Nzouankeu
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| |
Collapse
|
4
|
Tsholo K, Molale-Tom LG, Horn S, Bezuidenhout CC. Distribution of antibiotic resistance genes and antibiotic residues in drinking water production facilities: Links to bacterial community. PLoS One 2024; 19:e0299247. [PMID: 38781192 PMCID: PMC11115235 DOI: 10.1371/journal.pone.0299247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
There is a rapid spread of antibiotic resistance in the environment. However, the impact of antibiotic resistance in drinking water is relatively underexplored. Thus, this study aimed to quantify antibiotic resistance genes (ARGs) and antibiotic residues in two drinking water production facilities (NW-E and NW-C) in North West Province, South Africa and link these parameters to bacterial communities. Physicochemical and ARG levels were determined using standard procedures. Residues (antibiotics and fluconazole) and ARGs were quantified using ultra-high performance liquid chromatography (UHPLC) chemical analysis and real-time PCR, respectively. Bacterial community compositions were determined by high-throughput 16S rRNA sequencing. Data were analysed using redundancy analysis and pairwise correlation. Although some physicochemical levels were higher in treated than in raw water, drinking water in NW-E and NW-C was safe for human consumption using the South African Water Quality Guideline (SAWQG). ARGs were detected in raw and treated water. In NW-E, the concentrations of ARGs (sul1, intl1, EBC, FOX, ACC and DHA) were higher in treated water than in raw water. Regarding antimicrobial agents, antibiotic and fluconazole concentrations were higher in raw than in treated water. However, in NW-C, trimethoprim concentrations were higher in raw than in treated water. Redundancy analysis showed that bacterial communities were not significantly correlated (Monte Carlo simulations, p-value >0.05) with environmental factors. However, pairwise correlation showed significant differences (p-value <0.05) for Armatimonas, CL500-29 marine group, Clade III, Dickeya and Zymomonas genera with environmental factors. The presence of ARGs and antibiotic residues in the current study indicated that antibiotic resistance is not only a clinical phenomenon but also in environmental settings, particularly in drinking water niches. Consumption of NW-E and NW-C treated water may facilitate the spread of antibiotic resistance among consumers. Thus, regulating and monitoring ARGs and antibiotic residues in drinking water production facilities should be regarded as paramount.
Collapse
Affiliation(s)
- Karabo Tsholo
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
| | - Lesego Gertrude Molale-Tom
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Science, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | | |
Collapse
|
5
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
6
|
Wang L, Yin H, Li Y, Yang Z, Wang Y, Liu X. Prediction of microbial activity and abundance using interpretable machine learning models in the hyporheic zone of effluent-dominated receiving rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120627. [PMID: 38565034 DOI: 10.1016/j.jenvman.2024.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of ∼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (Ⅱ) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Haojie Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| | - Yutao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xianwei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
7
|
Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, Langille MGI, Wellington EMH, Christie-Oleza JA. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. MICROBIOME 2023; 11:225. [PMID: 37908022 PMCID: PMC10619285 DOI: 10.1186/s40168-023-01662-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts. RESULTS We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the surrounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acinetobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface-related microbiomes, especially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome-centric analysis allowed the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence-related genes to their host. Interestingly, a MAG belonging to Escherichia -that clearly predominated in water- harboured more ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic-related groups. Finally, ex-situ incubations using environmentally-relevant concentrations of antibiotics increased the prevalence of their corresponding ARGs, but different riverine compartments -including plastispheres- were affected differently by each antibiotic. CONCLUSIONS Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the environment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing on natural co-occurring materials and even more worrisome microbiome observed in the surrounding water highlights the urgent need to integrate the analysis of all environmental compartments when assessing risks and exposure to pathogens and ARGs in anthropogenically-impacted ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present address: Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, 1271155, Antofagasta, Chile.
| | - Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeannelle Quartey
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tyler N Cairns
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
8
|
Tiwari A, Kauppinen A, Räsänen P, Salonen J, Wessels L, Juntunen J, Miettinen IT, Pitkänen T. Effects of temperature and light exposure on the decay characteristics of fecal indicators, norovirus, and Legionella in mesocosms simulating subarctic river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160340. [PMID: 36423850 DOI: 10.1016/j.scitotenv.2022.160340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the decay characteristics of health-related microbes in surface waters is important for modeling the transportation of waterborne pathogens and for assessing their public health risks. Although water temperature and light exposure are major factors determining the decay characteristics of enteric microbes in surface waters, such effects have not been well studied in subarctic surface waters. This study comprehensively evaluated the effect of temperature and light on the decay characteristics of health-related microbes [Escherichia coli, enterococci, microbial source tracking markers (GenBac3 & HF183 assays), coliphages (F-specific and somatic), noroviruses GII and Legionella spp.] under simulated subarctic river water conditions. The experiments were conducted in four different laboratory settings (4 °C/dark, 15 °C/dark, 15 °C/light, and 22 °C/light). The T90 values (time required for a 90 % reduction in the population of a target) of all targets were higher under cold and dark (2.6-51.3 days depending upon targets) than under warm and light conditions (0.6-3.5 days). Under 4 °C/dark (simulated winter) water conditions, F-specific coliphages had 27.2 times higher, and coliform bacteria had 3.3 times higher T90 value than under 22 °C/light (simulated summer) water conditions. Bacterial molecular markers also displayed high variation in T90 values, with the greatest difference between 4 °C/dark and 22 °C/light recorded for HF183 DNA (20.6 times) and the lowest difference for EC23S857 RNA (6.6 times). E. coli, intestinal enterococci, and somatic coliphages were relatively more sensitive to light than water temperature, but F-specific coliphages, norovirus, and all bacterial rDNA and rRNA markers were relatively more sensitive to temperature than light exposure. Due to the slow microbial decay in winter under subarctic conditions, the microbial quality of river water might remain low for a long time after a sewage spill. This increased risk associated with fecal pollution during winter may deserve more attention, especially when river waters are used for drinking water production.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland; University of Helsinki, Department of Food Hygiene and Environmental Health, Helsinki, Finland.
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | - Pia Räsänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | - Jenniina Salonen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Laura Wessels
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | - Janne Juntunen
- Finnish Environment Institute, Freshwater Center, Jyväskylä, Finland
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland; University of Helsinki, Department of Food Hygiene and Environmental Health, Helsinki, Finland.
| |
Collapse
|
9
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, WastPan Study Group LänsivaaraAnnikaHyderRafiqulJanhonenErjaHokajärviAnna-MariaSarekoskiAnniinaKolehmainenAleksiBlomqvistSoileRäisänenKatiKopraCarita SavolainenMöttönenTeemuLuomalaOskariJuutinenAapoThakaliOceanMishraShyam Kumar, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
10
|
Abstract
Fecal contamination is a significant source of water quality impairment globally. Aquatic ecosystems can provide an important ecosystem service of fecal contamination removal. Understanding the processes that regulate the removal of fecal contamination among river networks across flow conditions is critical. We applied a river network model, the Framework for Aquatic Modeling in the Earth System (FrAMES-Ecoli), to quantify removal of fecal indicator bacteria by river networks across flow conditions during summers in a series of New England watersheds of different characteristics. FrAMES-Ecoli simulates sources, transport, and riverine removal of Escherichia coli (E. coli). Aquatic E. coli removal was simulated in both the water column and the hyporheic zone, and is a function of hydraulic conditions, flow exchange rates with the hyporheic zone, and die-off in each compartment. We found that, at the river network scale during summers, removal by river networks can be high (19–99%) with variability controlled by hydrologic conditions, watershed size, and distribution of sources in the watershed. Hydrology controls much of the variability, with 68–99% of network scale inputs removed under base flow conditions and 19–85% removed during storm events. Removal by the water column alone could not explain the observed pattern in E. coli, suggesting that processes such as hyporheic removal must be considered. These results suggest that river network removal of fecal indicator bacteria should be taken into consideration in managing fecal contamination at critical downstream receiving waters.
Collapse
|
11
|
Tiwari A, Gomez-Alvarez V, Siponen S, Sarekoski A, Hokajärvi AM, Kauppinen A, Torvinen E, Miettinen IT, Pitkänen T. Bacterial Genes Encoding Resistance Against Antibiotics and Metals in Well-Maintained Drinking Water Distribution Systems in Finland. Front Microbiol 2022; 12:803094. [PMID: 35197945 PMCID: PMC8859300 DOI: 10.3389/fmicb.2021.803094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Information on the co-occurrence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) among bacterial communities in drinking water distribution systems (DWDSs) is scarce. This study characterized ARGs and MRGs in five well-maintained DWDSs in Finland. The studied DWDSs had different raw water sources and treatment methods. Two of the waterworks employed artificially recharged groundwater (ARGW) and used no disinfection in the treatment process. The other three waterworks (two surface and one groundwater source) used UV light and chlorine during the treatment process. Ten bulk water samples (two from each DWDS) were collected, and environmental DNA was extracted and then sequenced using the Illumina HiSeq platform for high-throughput shotgun metagenome sequencing. A total of 430 ARGs were characterized among all samples with the highest diversity of ARGs identified from samples collected from non-disinfected DWDSs. Furthermore, non-disinfected DWDSs contained the highest diversity of bacterial communities. However, samples from DWDSs using disinfectants contained over double the ratio of ARG reads to 16S rRNA gene reads and most of the MRG (namely mercury and arsenic resistance genes). The total reads and types of ARGs conferring genes associated with antibiotic groups namely multidrug resistance, and bacitracin, beta-lactam, and aminoglycoside and mercury resistance genes increased in waterworks treating surface water with disinfection. The findings of this study contribute toward a comprehensive understanding of ARGs and MRGs in DWDSs. The occurrence of bacteria carrying antibiotic or metal resistance genes in drinking water causes direct exposure to people, and thus, more systematic investigation is needed to decipher the potential effect of these resistomes on human health.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Ananda Tiwari,
| | - Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Sallamaari Siponen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anniina Sarekoski
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ari Kauppinen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka T. Miettinen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Hernández-Lara A, Ros M, Cuartero J, Bustamante MÁ, Moral R, Andreu-Rodríguez FJ, Fernández JA, Egea-Gilabert C, Pascual JA. Bacterial and fungal community dynamics during different stages of agro-industrial waste composting and its relationship with compost suppressiveness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150330. [PMID: 34818753 DOI: 10.1016/j.scitotenv.2021.150330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 05/28/2023]
Abstract
Composting is an advantageous and efficient process for recycling organic waste and producing organic fertilizers, and many kinds of microorganisms are involved in obtaining quality compost with suppressive activity against soil-borne pathogens. The aim of this work was to evaluate the main differences in the effects of three composting piles on the whole bacterial and fungal communities of baby-leaf lettuce crops and to determine the specific communities by high-throughput sequencing related to suppressiveness against the soil-borne plant pathogen Pythium irregulare- (P. irregulare). Compost pile A was composed of 47% vineyard pruning waste, 34% tomato waste and 19% leek waste; pile B was composed of 54% vineyard pruning waste and 46% tomato waste; and pile C was composed of 42% vineyard pruning waste, 25% tomato waste and 33% olive mill cake. The temperature and the chemical properties of the piles were monitored throughout the composting process. In addition, the potential suppressive capacity of the three composts (C_A, C_B and C_C) against P. irregulare in baby-leaf lettuce was assessed. We found that the bacterial community changed according to the composting phases and composting pile and was sensitive to chemical changes throughout the composting process. The fungal community, on the other hand, did not change between the composting piles and proved to be less influenced by chemical properties, but it did change, principally, according to the composting phases. All composts obtained were considered stable and mature, while compost C_C showed higher maturity than composts C_A and C_B. During composting, the three piles contained a greater relative abundance of Bacterioidetes, Proteobacterias and Actinobacterias related to the suppression of soil-borne pathogens such as Pythium irregulare. Composts C_A and C_B, however, showed higher suppressiveness against P. irregulare than compost C_C. Deeper study showed that this observed suppressiveness was favored by a higher abundance of genera that have been described as potential suppressive against P. irregulare, such as Aspergillus, Penicillium, Truepera and Luteimonas.
Collapse
Affiliation(s)
- Alicia Hernández-Lara
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | - Margarita Ros
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Jessica Cuartero
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - María Ángeles Bustamante
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, ctra. Beniel Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Raul Moral
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, ctra. Beniel Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Francisco Javier Andreu-Rodríguez
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, ctra. Beniel Km 3.2, 03312, Orihuela, Alicante, Spain
| | - Juan A Fernández
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; Plant Biotechnology Institute, Edificio I + D + i, Campus Muralla del Mar, 30202 Cartagena, Spain
| | - Catalina Egea-Gilabert
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; Plant Biotechnology Institute, Edificio I + D + i, Campus Muralla del Mar, 30202 Cartagena, Spain
| | - José Antonio Pascual
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
13
|
The Impact of Extreme Weather Events on Bacterial Communities and Opportunistic Pathogens in a Drinking Water Treatment Plant. WATER 2021. [DOI: 10.3390/w14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drinking water treatment processes are highly effective at improving water quality, but pathogens can still persist in treated water, especially after extreme weather events. To identify how extreme weather events affected bacterial populations in source and treated water, water samples were collected from the Yangtze River Delta area and a local full-scale drinking water treatment plant. Bacterial community structure and the occurrence of pathogens were investigated in samples using 16S rRNA sequencing and qPCR techniques. In this study, the results show that intense rainfall can significantly increase levels of bacteria and opportunistic pathogens in river and drinking water treatment processes (p < 0.05); in particular, the relative abundance of Cyanobacteria increased after a super typhoon event (p < 0.05). The biological activated carbon (BAC) tank was identified as a potential pathogen reservoir and was responsible for 52 ± 6% of the bacteria released downstream, according to Bayesian-based SourceTracker analysis. Our results provide an insight into the challenges faced by maintaining finished water quality under changing weather conditions.
Collapse
|
14
|
Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T. Bathing Water Quality Monitoring Practices in Europe and the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5513. [PMID: 34063910 PMCID: PMC8196636 DOI: 10.3390/ijerph18115513] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Many countries including EU Member States (EUMS) and the United States (U.S.) regularly monitor the microbial quality of bathing water to protect public health. This study comprehensively evaluates the EU bathing water directive (BWD) and the U.S. recreational water quality criteria (RWQC) as regulatory frameworks for monitoring microbial quality of bathing water. The major differences between these two regulatory frameworks are the provision of bathing water profiles, classification of bathing sites based on the pollution level, variations in the sampling frequency, accepted probable illness risk, epidemiological studies conducted during the development of guideline values, and monitoring methods. There are also similarities between the two approaches given that both enumerate viable fecal indicator bacteria (FIB) as an index of the potential risk to human health in bathing water and accept such risk up to a certain level. However, enumeration of FIB using methods outlined within these current regulatory frameworks does not consider the source of contamination nor variation in inactivation rates of enteric microbes in different ecological contexts, which is dependent on factors such as temperature, solar radiation, and salinity in various climatic regions within their geographical areas. A comprehensive "tool-box approach", i.e., coupling of FIB and viral pathogen indicators with microbial source tracking for regulatory purposes, offers potential for delivering improved understanding to better protect the health of bathers.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
| | - David M. Oliver
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK;
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|