1
|
Bokwa-Dąbrowska K, Mocanu D, Romanus I, Zych R, Huuskonen M, Szaro P. Peroneus brevis split tear - A challenging diagnosis: A pictorial review of magnetic resonance and ultrasound imaging - Part 2: Imaging with magnetic resonance and ultrasound. Eur J Radiol Open 2025; 14:100627. [PMID: 39816202 PMCID: PMC11733185 DOI: 10.1016/j.ejro.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Peroneal tendon pathology is common among physically active individuals, with tenosynovitis, tendon subluxation, split tears and rupture. However, diagnosing these conditions, particularly peroneus brevis split tears, is clinically and radiologically challenging. Magnetic resonance imaging (MRI) and ultrasound (US) can sometimes miss split tears. A significant portion of peroneus split tears develops on a background of tendinopathy. The presence of tenosynovitis, changes in tendon shape, and multiple subtendons can indicate a complete multifragmenting split tear. A defect on the surface of the tendon may indicate a partial-thickness split tear, commonly referred to as the "cleft sign." Peroneus subluxation is particularly likely when the superior peroneal retinaculum is torn. Given the subtlety of clinical symptoms, radiological evaluation is essential. Dynamic US assessment is especially valuable for detecting instability and split tears. This pictorial review presents the imaging spectrum of the most common pathologies of the peroneus brevis tendon on US and MRI.
Collapse
Affiliation(s)
- Katarzyna Bokwa-Dąbrowska
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Mocanu
- Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isaac Romanus
- Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rafał Zych
- Department of Clinical and Descriptive Anatomy, Medical University of Warsaw, Poland
| | - Michael Huuskonen
- Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szaro
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Musculoskeletal Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical and Descriptive Anatomy, Medical University of Warsaw, Poland
| |
Collapse
|
2
|
Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, Luo D, Zhang N, Zhao W, Wang L, Yang Q. COL5A1 promotes triple-negative breast cancer progression by activating tumor cell-macrophage crosstalk. Oncogene 2024; 43:1742-1756. [PMID: 38609499 DOI: 10.1038/s41388-024-03030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFβ from M2 macrophages drived TNBC doxorubicin resistance through the TGFβ/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chenao Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Osorio-Conles Ó, Olbeyra R, Vidal J, Ibarzabal A, Balibrea JM, de Hollanda A. Expression of Adipose Tissue Extracellular Matrix-Related Genes Predicts Weight Loss after Bariatric Surgery. Cells 2023; 12:cells12091262. [PMID: 37174662 PMCID: PMC10177079 DOI: 10.3390/cells12091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND We evaluated the association between white adipose tissue parameters before bariatric surgery (BS) and post-surgical weight loss, with an especial focus on extracellular matrix (ECM) gene expression. METHODS Paired samples from subcutaneous (SAT) and visceral adipose tissue (VAT) were obtained from 144 subjects undergoing BS. The association between total body weight loss (%TBWL) at 12 months after BS and the histological characteristics and gene expression of selected genes in SAT and VAT was analyzed. RESULTS Fat cell area, size-frequency distribution, and fibrosis in SAT or VAT prior to surgery were not associated with %TBWL. On the contrary, the SAT expression of COL5A1 and COL6A3 was associated with %TBWL after BS (both p < 0.001), even after adjusting for age, gender, baseline BMI, and type 2 diabetes status (T2D). Furthermore, in logistic regression analyses, the expression of these genes was significantly associated with insufficient WL (IWL = TBWL < 20%) after BS (respectively, p = 0.030 and p = 0.031). Indeed, in ROC analysis, the prediction of IWL based on sex, age, BMI, T2D, and the type of surgery (AUC = 0.71) was significantly improved with the addition of SAT-COL5A1 gene expression (AUC = 0.88, Z = 2.13, p = 0.032). CONCLUSIONS Our data suggest that the expression of SAT ECM-related genes may help explain the variability in TBWL following BS.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Romina Olbeyra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
| |
Collapse
|
4
|
Alvarez-Romero J, Laguette MJN, Seale K, Jacques M, Voisin S, Hiam D, Feller JA, Tirosh O, Miyamoto-Mikami E, Kumagai H, Kikuchi N, Kamiya N, Fuku N, Collins M, September AV, Eynon N. Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. Eur J Sport Sci 2023; 23:284-293. [PMID: 34821541 DOI: 10.1080/17461391.2021.2011426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Previous small-scale studies have shown an association between the COL5A1 gene and anterior cruciate ligament (ACL) injury risk. In this larger study, the genotype and allele frequency distributions of the COL5A1 rs12722 C/T and rs10628678 AGGG/deletion (AGGG/-) indel variants were compared between participants: (i) with ACL injury in independent and combined cohorts from South-Africa (SA) and Australia (AUS) vs controls (CON), and (ii) with any ligament (ALL) or only ACL injury in a Japanese (JPN) cohort vs CON. Samples were collected from SA (235 cases; 232 controls), AUS (362 cases; 80 controls) and JPN (500 cases; 1,403 controls). Genomic DNA was extracted and genotyped. Distributions were compared, and inferred haplotype analyses performed. No independent associations were noted for rs12722 or rs10628678 when the combined SA + AUS cohort was analysed. However, the C-deletion (rs12722-rs10628678) inferred haplotype was under-represented (p = 0.040, OR = 0.15, CI = 0.04-0.56), while the T-deletion inferred haplotype was over-represented in the female SA + AUS ACL participants versus controls (p < 0.001, OR = 4.74, CI = 1.66-13.55). Additionally, the rs12722 C/C genotype was under-represented in JPN CON vs ACL (p = 0.039, OR = 0.52, 0.27-1.00), while the rs10628678 -/- genotype was associated with increased risk of any ligament injuries (p = 0.035, OR = 1.31, CI = 1.02-1.68) in the JPN cohort. Collectively, these results highlight that a region within the COL5A1 3'-UTR is associated with ligament injury risk. This must be evaluated in larger cohorts and its functional relevance to the structure and capacity of ligaments and joint biomechanics be explored.Highlights The COL5A1 T-deletion inferred haplotype (rs12722-rs10628678) was associated with an increased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 C-deletion inferred haplotype (rs12722-rs10628678) was associated with a decreased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 rs12722 C/C and rs10628678 -/- genotypes were associated with increased risk of ACL rupture and of ligament injuries in JPN, respectively.A region within the COL5A1 3'-UTR is associated with risk of ligament injury, including ACL rupture, and therefore the functional significance of this region on ligament capacity and joint biomechanics requires further exploration.
Collapse
Affiliation(s)
| | - Mary-Jessica N Laguette
- Division of Exercise Science and Sports Medicine (ESSM), Human Biology Department, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, ESSM, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Oren Tirosh
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,School Health Science, Swinburne University of Technology, Melbourne Australia
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Naoki Kikuchi
- Department of Training Science, Nippon Sport Science University, Tokyo, Japan
| | - Nobuhiro Kamiya
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Malcolm Collins
- Division of Exercise Science and Sports Medicine (ESSM), Human Biology Department, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Alison V September
- Division of Exercise Science and Sports Medicine (ESSM), Human Biology Department, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,Research Centre for Health Through Physical Activity and Sport, University of Cape Town, Cape Town, South Africa
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
5
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
6
|
Bennett K, Vincent T, Sakthi-Velavan S. The patellar ligament: A comprehensive review. Clin Anat 2021; 35:52-64. [PMID: 34554600 DOI: 10.1002/ca.23791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023]
Abstract
The patellar ligament (PL) is an epiphyseal ligament and is part of the extensor complex of the knee. The ligament has gained attention due to its clinical relevance to autograft and tendinopathy. A variety of anatomical variations of the PL such as aplasia, numerical variations, and vascularity are being reported recently by clinicians and anatomists. The aim of this literature was to review the available literature to provide a consensus regarding anatomic variations of the PL, neurovasculature surrounding the PL, histology of the PL, and various aspects of PL measurements with relevance to the surgical considerations and sex and age-related differences. A narrative review of the patellar ligament was performed by conducting a detailed literature search and review of relevant articles. A total of 90 articles on the patellar ligament were included and were categorized into studies based on anatomical variations, neurovasculature, morphometrics, microanatomy, sex and age-related difference, and ACL reconstruction. The anatomical variations and morphometrics of the PL were found to correlate with the frequency of strain injuries, tendinopathy, and efficacy of the PL autograft in anterior cruciate ligament reconstruction. The sex differences in PL measurements and the effect of estrogen on collagen synthesis explained a higher incidence of patellar tendinopathy in women. An awareness of its variations enables careful selection of surgical incisions, thereby avoiding complications related to nerve injury. Accurate knowledge of the PL microanatomy assists in understanding the mechanism of ligament degeneration, rupture, autograft harvesting, and ligamentization results.
Collapse
Affiliation(s)
- Karis Bennett
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Tanner Vincent
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Sumathilatha Sakthi-Velavan
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
COL5A1 RS12722 Is Associated with Temporomandibular Joint Anterior Disc Displacement without Reduction in Polish Caucasians. Cells 2021; 10:cells10092423. [PMID: 34572072 PMCID: PMC8470511 DOI: 10.3390/cells10092423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous reports describe the association between the single-nucleotide polymorphism (SNP) rs12722 and rs13946 in the COL5A1 gene and injuries, such as Achilles tendon pathology, anterior cruciate ligament (ACL) injuries, and tennis elbow. Hence, there were no studies investigating COL5A1 and temporomandibular joint (TMJ) pathology. The aim of this study is to evaluate the relationship between COL5A1 rs12722 and rs13946 SNPs and TMJ articular disc displacement without reduction (ADDwoR). In this case-control study, the study group consisted of 124 Caucasian patients of both sexes. Each patient had a history of ADDwoR no more than 3 months prior. The control group comprised 126 patients with no signs of TMD according to DC/TMD. Genotyping of the selected SNPs was performed by real-time PCR using TaqMan probes. The significance of the differences in the distribution of genotypes was analyzed using Pearson’s chi-square test. Logistic regression modeling was performed to analyze the influence of the 164 investigated SNPs on ADDwoR. The COL5A1 marker rs12722 turned out to be statistically significant (p-value = 0.0119), implying that there is a difference in the frequencies of TMJ ADDwoR. The distribution of rs12722 SNPs in the study group TT(66), CC(27), CT(31) vs. control group TT(45), CC(26), CT(51) indicates that patients with CT had an almost 2.4 times higher likelihood of ADDwoR (OR = 2.41) than those with reference TT (OR = 1), while rs13946 genotypes were shown to be insignificant, with a p-value of 0.1713. The COL5A1 rs12722 polymorphism is a risk factor for ADDwoR in the Polish Caucasian population.
Collapse
|
8
|
Lim T, Santiago C, Pareja-Galeano H, Iturriaga T, Sosa-Pedreschi A, Fuku N, Pérez-Ruiz M, Yvert T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand J Med Sci Sports 2021; 31:2014-2032. [PMID: 34270833 DOI: 10.1111/sms.14020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Non-contact muscle injuries (NCMI) account for a large proportion of sport injuries, affecting athletes' performance and career, team results and financial aspects. Recently, genetic factors have been attributed a role in the susceptibility of an athlete to sustain NCMI. However, data in this field are only just starting to emerge. OBJECTIVES To review available knowledge of genetic variations associated with sport-related NCMI. METHODS The databases Pubmed, Scopus, and Web of Science were searched for relevant articles published until February 2021. The records selected for review were original articles published in peer-reviewed journals describing studies that have examined NCMI-related genetic variations in adult subjects (17-60 years) practicing any sport. The data extracted from the studies identified were as follows: general information, and data on genetic polymorphisms and NCMI risk, incidence and recovery time and/or severity. RESULTS Seventeen studies examining 47 genes and 59 polymorphisms were finally included. 29 polymorphisms affecting 25 genes were found significantly associated with NCMI risk, incidence, recovery time, and/or severity. These genes pertain to three functional categories: (i) muscle fiber structural/contractile properties, (ii) muscle repair and regeneration, or (iii) muscle fiber external matrix composition and maintenance. CONCLUSION Our review confirmed the important role of genetics in NCMI. Some gene variants have practical implications such as differences of several weeks in recovery time detected between genotypes. Knowledge in this field is still in its early stages. Future studies need to examine a wider diversity of sports and standardize their methods and outcome measures.
Collapse
Affiliation(s)
- Tifanny Lim
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Catalina Santiago
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Tamara Iturriaga
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | - Thomas Yvert
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Association of rs12722 COL5A1 with pulmonary tuberculosis: a preliminary case-control study in a Kazakhstani population. Mol Biol Rep 2021; 48:691-699. [PMID: 33409715 DOI: 10.1007/s11033-020-06121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Lung cavitation is the classic hallmark of TB, which facilitates the disease development and transmission. It involves the degradation of lung parenchyma which is mainly made up of collagen fibers by metalloproteinases (MMPs) produced by activated monocyte-derived cells, neutrophils and stromal cells. The following population-based preliminary case-control study of adults with TB (50) and controls (112) without TB was used to investigate possible association between rs1800012 in COL1A1, rs12722 in COL5A1 genes and pulmonary TB in Kazakhstan. We examined 162 samples (50 cases and 112 controls) to study the associations between TB disease status and demographic variables along with single nucleotide polymorphisms related to COLA1 and COL5A1. The unadjusted χ2 and multivariable logistic regression was performed to find out relationships between SNP and other predictors. Preliminary findings suggest that there is a statistically significant association of age (AOR = 0.97, 95% CI:0.94-0.99, p value = 0.049), social status (AOR = 2.41, 95% CI:1.16-5.02, p value = 0.018), HIV status (AOR = 7.12, 95% CI:1.90-26.7, p value = 0.004) and heterozygous rs12722 SNP (AOR = 2.47, 95% CI:1.17-5.19, p value = 0.018) polymorphism of COL5A1 gene with TB susceptibility. The association of collagen genes with TB pathogenesis indicates that anti TB programs can include development of new drug regimens that include MMP inhibitors which has been found to be helpful in collagen remodeling and repair. Therapeutic targeting of MMPs will prevent extracellular matrix and collagen degradation and granuloma maturation.
Collapse
|
10
|
Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. Int J Mol Sci 2020; 21:ijms21041204. [PMID: 32054071 PMCID: PMC7072725 DOI: 10.3390/ijms21041204] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPS), a group of inherited metabolic disorders caused by deficiency in enzymes involved in degradation of glycosaminoglycans (GAGs), are examples (and models) of monogenic diseases. Accumulation of undegraded GAGs in lysosomes was supposed to be the major cause of MPS symptoms; however, their complexity and variability between particular types of the disease can be hardly explained by such a simple storage mechanism. Here we show that transcriptomic (RNA-seq) analysis of the material derived from fibroblasts of patients suffering from all types and subtypes of MPS, supported by RT-qPCR results, revealed surprisingly large changes in expression of genes involved in various cellular processes, indicating complex mechanisms of MPS. Although each MPS type and subtype was characterized by specific changes in gene expression profile, there were genes with significantly changed expression relative to wild-type cells that could be classified as common for various MPS types, suggesting similar disturbances in cellular processes. Therefore, both common features of all MPS types, and differences between them, might be potentially explained on the basis of changes in certain cellular processes arising from disturbed regulations of genes’ expression. These results may shed a new light on the mechanisms of genetic diseases, indicating how a single mutation can result in complex pathomechanism, due to perturbations in the network of cellular reactions. Moreover, they should be considered in studies on development of novel therapies, suggesting also why currently available treatment methods fail to correct all/most symptoms of MPS. We propose a hypothesis that disturbances in some cellular processes cannot be corrected by simple reduction of GAG levels; thus, combined therapies are necessary which may require improvement of these processes.
Collapse
|
11
|
Di Y, Chen D, Yu W, Yan L. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas 2019; 156:7. [PMID: 30723390 PMCID: PMC6350372 DOI: 10.1186/s41065-019-0083-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Bladder cancer was a malignant disease in patients, our research aimed at discovering the possible biomarkers for the diseases. Results The gene chip GSE31684, including 93samples, was downloaded from the GEO datasets and co-expression network was constructed by the data. Molecular complex detection(MCODE) was used to identify hub genes. The most significant cluster including 16 genes: CDH11, COL3A1, COL6A3, COL5A1, AEBP1, COL1A2, NTM, COL11A1, THBS2, COL8A1, COL1A1, BGN, MMP2, PXDN, THY1, and TGFB1I1 was identified. After annotated by BiNGO, they were suggested associated with collagen fibril organization and blood vessel development. In addition, the Kaplan Meier curves were obtained by UALCAN. The high expression of THY1, AEBP1, CDH11, COL1A1, COL1A2, COL11A1, MMP2, PXDN, BGN, COL5A1, COL8A1, and TGFB1I1 indicated poor prognosis of the patients(P < 0.05). Finally, we examined genes’ expression between low and high tumor stage by the Wilcoxon test(P < 0.05), TGFB1I1 was excluded. Conclusion THY1, AEBP1, CDH11, COL1A1, COL1A2, COL11A1, MMP2, PXDN, BGN, COL5A1, COL8A1 associated with the tumor stage as well as tumor patients’ prognosis. COL5A1, COL8A1(P < 0.01) may serve as therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yu Di
- 1Department of Urinary Surgery, Qilu Hospital, Jinan, Shandong province China.,Department laboratory of cardiovascular center of Shandong province, Jinan, Shandong province China
| | - Dongshan Chen
- 1Department of Urinary Surgery, Qilu Hospital, Jinan, Shandong province China.,Department laboratory of cardiovascular center of Shandong province, Jinan, Shandong province China
| | - Wei Yu
- 3Lanzhou medical college of Lanzhou University, Lanzhou, Gansu province China
| | - Lei Yan
- 1Department of Urinary Surgery, Qilu Hospital, Jinan, Shandong province China
| |
Collapse
|