1
|
Maggio MG, Billeri L, Cardile D, Quartarone A, Calabrò RS. The Role of Innovation Technology in the Rehabilitation of Patients Affected by Huntington's Disease: A Scoping Review. Biomedicines 2023; 12:39. [PMID: 38255146 PMCID: PMC10813604 DOI: 10.3390/biomedicines12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Huntington's disease is an autosomal dominant neurodegenerative disease caused by the repetition of cytosine, adenine, and guanine trinucleotides on the short arm of chromosome 4p16.3 within the Huntingtin gene. In this study, we aim to examine and map the existing evidence on the use of innovations in the rehabilitation of Huntington's disease. A scoping review was conducted on innovative rehabilitative treatments performed on patients with Huntington's disease. A search was performed on PubMed, Embase, Web of Science, and Cochrane databases to screen references of included studies and review articles for additional citations. Of an initial 1117 articles, only 20 met the search criteria. These findings showed that available evidence is still limited and that studies generally had small sample sizes and a high risk of bias. Regarding cognitive rehabilitation, it has emerged that VR- and PC-based methods as well as NIBS techniques are feasible and may have promising effects in individuals with Huntington's disease. On the other hand, scarce evidence was found for cognitive and motor training that might have a slight impact on overall cognitive function in individuals with Huntington's disease. Data show that further investigation is needed to explore the effects of innovative rehabilitation tools on cognition, especially considering that cognitive and psychiatric symptoms can precede the onset of motor symptoms by many years.
Collapse
Affiliation(s)
| | | | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza, 98124 Messina, Italy; (M.G.M.); (L.B.)
| | | | | |
Collapse
|
2
|
Zhou Z, Chen X, Li Y, Chen S, Zhang S, Wu Y, Shi X, Ren M, Shan C. Effects of integrated action and sensory observation therapy based on mirror neuron and embodied cognition theory on upper limb sensorimotor function in chronic stroke: a study protocol for a randomised controlled trial. BMJ Open 2023; 13:e069126. [PMID: 36882253 PMCID: PMC10008471 DOI: 10.1136/bmjopen-2022-069126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION This study protocol aims to explore the effectiveness and neural mechanism of the integration of action observation therapy (AOT) and sensory observation therapy (SOT) for post-stroke patients on upper limb sensorimotor function. METHODS AND ANALYSIS This is a single-centre, single-blind, randomised controlled trial. A total of 69 patients with upper extremity hemiparesis after stroke will be recruited and randomly divided into an AOT group, a combined action observation and somatosensory stimulation therapy (AOT+SST) group, and a combined AOT and SOT (AOT+SOT) group in a 1:1:1 ratio. Each group will receive 30 min of daily treatment, five times weekly for 4 weeks. The primary clinical outcome will be the Fugl-Meyer Assessment for Upper Extremity. Secondary clinical outcomes will include the Box and Blocks Test, modified Barthel Index and sensory assessment. All clinical assessments and resting-state functional MRI and diffusion tensor imaging data will be obtained at pre-intervention (T1), post-intervention (T2) and 8 weeks of follow-up (T3). ETHICS AND DISSEMINATION The trial was approved by the Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Traditional Medicine (Grant No. 2020-178). The results will be submitted to a peer-review journal or at a conference. TRIAL REGISTRATION NUMBER ChiCTR2000040568.
Collapse
Affiliation(s)
- Zhiqing Zhou
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Songmei Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Sicong Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zini F, Le Piane F, Gaspari M. Adaptive Cognitive Training with Reinforcement Learning. ACM T INTERACT INTEL 2022. [DOI: 10.1145/3476777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Computer-assisted cognitive training can help patients affected by several illnesses alleviate their cognitive deficits or healthy people improve their mental performance. In most computer-based systems, training sessions consist of graded exercises, which should ideally be able to gradually improve the trainee’s cognitive functions. Indeed, adapting the difficulty of the exercises to how individuals perform in their execution is crucial to improve the effectiveness of cognitive training activities. In this article, we propose the use of reinforcement learning (RL) to learn how to automatically adapt the difficulty of computerized exercises for cognitive training. In our approach, trainees’ performance in performed exercises is used as a reward to learn a policy that changes over time the values of the parameters that determine exercise difficulty. We illustrate a method to be initially used to learn difficulty-variation policies tailored for specific categories of trainees, and then to refine these policies for single individuals. We present the results of two user studies that provide evidence for the effectiveness of our method: a first study, in which a student category policy obtained via RL was found to have better effects on the cognitive function than a standard baseline training that adopts a mechanism to vary the difficulty proposed by neuropsychologists, and a second study, demonstrating that adding an RL-based individual customization further improves the training process.
Collapse
|
4
|
Casella C, Bourbon-Teles J, Bells S, Coulthard E, Parker GD, Rosser A, Jones DK, Metzler-Baddeley C. Drumming Motor Sequence Training Induces Apparent Myelin Remodelling in Huntington's Disease: A Longitudinal Diffusion MRI and Quantitative Magnetization Transfer Study. J Huntingtons Dis 2020; 9:303-320. [PMID: 32894249 PMCID: PMC7836062 DOI: 10.3233/jhd-200424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Impaired myelination may contribute to Huntington’s disease (HD) pathogenesis. Objective: This study assessed differences in white matter (WM) microstructure between HD patients and controls, and tested whether drumming training stimulates WM remodelling in HD. Furthermore, it examined whether training-induced microstructural changes are related to improvements in motor and cognitive function. Methods: Participants undertook two months of drumming exercises. Working memory and executive function were assessed before and post-training. Changes in WM microstructure were investigated with diffusion tensor magnetic resonance imaging (DT-MRI)-based metrics, the restricted diffusion signal fraction (Fr) from the composite hindered and restricted model of diffusion (CHARMED) and the macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT) imaging. WM pathways linking putamen and supplementary motor areas (SMA-Putamen), and three segments of the corpus callosum (CCI, CCII, CCIII) were studied using deterministic tractography. Baseline MPF differences between patients and controls were assessed with tract-based spatial statistics. Results: MPF was reduced in the mid-section of the CC in HD subjects at baseline, while a significantly greater change in MPF was detected in HD patients relative to controls in the CCII, CCIII, and the right SMA-putamen post-training. Further, although patients improved their drumming and executive function performance, such improvements did not correlate with microstructural changes. Increased MPF suggests training-induced myelin changes in HD. Conclusion: Though only preliminary and based on a small sample size, these results suggest that tailored behavioural stimulation may lead to neural benefits in early HD, that could be exploited for delaying disease progression.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Jose Bourbon-Teles
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Sonya Bells
- The Hospital for Sick Children, Neurosciences and Mental Health, Toronto, Canada
| | | | - Greg D Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Anne Rosser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Neurology and Psychological Medicine, Hayden Ellis Building, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
5
|
Yhnell E, Furby H, Lowe RS, Brookes-Howell LC, Drew CJG, Playle R, Watson G, Metzler-Baddeley C, Rosser AE, Busse ME. A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington's disease (CogTrainHD). Pilot Feasibility Stud 2020; 6:88. [PMID: 32577299 PMCID: PMC7304172 DOI: 10.1186/s40814-020-00623-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is associated with a range of cognitive deficits including problems with executive function. In the absence of a disease modifying treatment, cognitive training has been proposed as a means of slowing cognitive decline; however, the impact of cognitive training in HD patient populations remains unclear. The CogTrainHD study assessed the feasibility and acceptability of home-based computerised executive function training, for people impacted by HD. METHODS Thirty HD gene carriers were recruited and randomised to either executive function training or non-intervention control groups. Participants allocated to the intervention group were asked to complete executive function training three times a week for 30 min for 12 weeks in their own homes. Semi-structured interviews were conducted with participants and friends, family or carers, to determine their views on the study. RESULTS 26 out of 30 participants completed the baseline assessments and were subsequently randomised: 13 to the control group and 13 to the intervention group. 23 of the 30 participants were retained until study completion: 10/13 in the intervention group and 13/13 in the control group. 4/10 participants fully adhered to the executive function training. All participants in the control group 13/13 completed the study as intended. Interview data suggested several key facilitators including participant determination, motivation, incorporation of the intervention into routine and support from friends and family members. Practical limitations, including lack of time, difficulty and frustration in completing the intervention, were identified as barriers to study completion. CONCLUSIONS The CogTrainHD feasibility study provides important evidence regarding the feasibility and acceptability of a home-based cognitive training intervention for people with HD. Variable adherence to the cognitive training implies that the intervention is not feasible to all participants in its current form. The study has highlighted important aspects in relation to both the study and intervention design that require consideration, and these include the design of games in the executive function training software, logistical considerations such as lack of time, the limited time participants had to complete the intervention and the number of study visits required. Further studies are necessary before computerised executive function training can be recommended routinely for people with HD. TRIAL REGISTRATION ClinicalTrials.gov, Registry number NCT02990676.
Collapse
Affiliation(s)
- Emma Yhnell
- Neuroscience and Mental Health Research Institute, Cardiff University (NMHRI), 3rd Floor, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Hannah Furby
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff University, Cardiff, CF24 4HQ UK
| | - Rachel S. Lowe
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Lucy C. Brookes-Howell
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Cheney J. G. Drew
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Rebecca Playle
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Gareth Watson
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Claudia Metzler-Baddeley
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff University, Cardiff, CF24 4HQ UK
| | - Anne E. Rosser
- Neuroscience and Mental Health Research Institute, Cardiff University (NMHRI), 3rd Floor, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- Cardiff University Brain Repair Group, Life Sciences Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Monica E. Busse
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| |
Collapse
|