1
|
Ahmed H, Kilinc SG, Celik F, Kesik HK, Simsek S, Ahmad KS, Afzal MS, Farrakh S, Safdar W, Pervaiz F, Liaqat S, Zhang J, Cao J. An Inventory of Anthelmintic Plants across the Globe. Pathogens 2023; 12:131. [PMID: 36678480 PMCID: PMC9866317 DOI: 10.3390/pathogens12010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
A wide range of novelties and significant developments in the field of veterinary science to treat helminth parasites by using natural plant products have been assessed in recent years. To the best of our knowledge, to date, there has not been such a comprehensive review of 19 years of articles on the anthelmintic potential of plants against various types of helminths in different parts of the world. Therefore, the present study reviews the available information on a large number of medicinal plants and their pharmacological effects, which may facilitate the development of an effective management strategy against helminth parasites. An electronic search in four major databases (PubMed, Scopus, Web of Science, and Google Scholar) was performed for articles published between January 2003 and April 2022. Information about plant species, local name, family, distribution, plant tissue used, and target parasite species was tabulated. All relevant studies meeting the inclusion criteria were assessed, and 118 research articles were included. In total, 259 plant species were reviewed as a potential source of anthelmintic drugs. These plants can be used as a source of natural drugs to treat helminth infections in animals, and their use would potentially reduce economic losses and improve livestock production.
Collapse
Affiliation(s)
- Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shazad, Islamabad 45550, Pakistan
| | - Seyma Gunyakti Kilinc
- Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Turkey
| | - Harun Kaya Kesik
- Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Turkey
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan
| | - Muhammad Sohail Afzal
- Department of Chemistry, University of Management & Technology (UMT), Lahore 54770, Pakistan
| | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shazad, Islamabad 45550, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
| | - Fahad Pervaiz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shazad, Islamabad 45550, Pakistan
| | - Sadia Liaqat
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shazad, Islamabad 45550, Pakistan
| | - Jing Zhang
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Jianping Cao
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| |
Collapse
|
2
|
Ahmed S, Shohael AM, Paek KY. Evaluation of growth and some unexplored bioactivities of bioreactor grown adventitious root culture of ginseng (Panax ginseng C.A. Meyer). Biotechnol Appl Biochem 2021; 69:2046-2060. [PMID: 34622986 DOI: 10.1002/bab.2266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022]
Abstract
The purpose of the present study was to evaluate the growth potential and some rarely reported bioactivities (antioxidant, thrombolytic, anticoagulant, and anthelmintic) of Panax ginseng C.A. Meyer adventitious roots. To demonstrate the growth, shake flask and laboratory-scale bioreactor cultures have been employed. The obtained biomass was dried and extracted with water, ethanol, and methanol. The growth ratio (12.62 ± 1.03) observed in the bioreactor was significantly higher than in the shake flask culture. The presence of 10 different phytochemical classes, including carbohydrates, saponins, glycosides, and terpenoids were detected in qualitative estimation. Significant quantities of phenolics, flavonoids, proteins, and tannins were determined. Dose-dependent antioxidant activities were observed, and the IC50 values of methanolic and ethanolic extracts were very similar to the standard. The highest (29.26 ± 5.31%) thrombolytic potential was shown by the methanolic extract. The ethanolic extract significantly extended the coagulation times up to 2.5 fold. The highest anthelmintic properties in terms of paralyzing (2.21 ± 0.31 min) and killing (3.69 ± 0.41 min) of the parasitic worms were displayed by the aqueous extract. The in vitro root growth implies the commercial feasibility of ginseng production in Bangladesh and the demonstration of potential bioactivities strengthens medicinal implications and also offering new research areas.
Collapse
Affiliation(s)
- Sium Ahmed
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Abdullah Mohammad Shohael
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Kee Yoeup Paek
- Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|