1
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
2
|
Rohner PT, Hu Y, Moczek AP. Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry. Evol Dev 2024; 26:e12464. [PMID: 38041612 DOI: 10.1111/ede.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Haslin E, Pettigrew EJ, Hickson RE, Kenyon PR, Gedye KR, Lopez-Villalobos N, Jayawardana JMDR, Morris ST, Blair HT. Genome-Wide Association Studies of Live Weight at First Breeding at Eight Months of Age and Pregnancy Status of Ewe Lambs. Genes (Basel) 2023; 14:genes14040805. [PMID: 37107563 PMCID: PMC10137859 DOI: 10.3390/genes14040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study estimated genetic parameters and identified candidate genes associated with live weight, and the occurrence of pregnancy in 1327 Romney ewe lambs using genome-wide association studies. Phenotypic traits considered were the occurrence of pregnancy in ewe lambs and live weight at eight months of age. Genetic parameters were estimated, and genomic variation was assessed using 13,500 single-nucleotide polymorphic markers (SNPs). Ewe lamb live weight had medium genomic heritability and was positively genetically correlated with occurrence of pregnancy. This suggests that selection for heavier ewe lambs is possible and would likely improve the occurrence of pregnancy in ewe lambs. No SNPs were associated with the occurrence of pregnancy; however, three candidate genes were associated with ewe lamb live weight. Tenascin C (TNC), TNF superfamily member 8 (TNFSF8) and Collagen type XXVIII alpha 1 chain (COL28A1) are involved in extracellular matrix organization and regulation of cell fate in the immune system. TNC may be involved in ewe lamb growth, and therefore, could be of interest for selection of ewe lamb replacements. The association between ewe lamb live weight and TNFSF8 and COL28A1 is unclear. Further research is needed using a larger population to determine whether the genes identified can be used for genomic selection of replacement ewe lambs.
Collapse
Affiliation(s)
- Emmanuelle Haslin
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Correspondence:
| | | | | | - Paul R. Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Kristene R. Gedye
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand;
| | - Nicolas Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - J. M. D. R. Jayawardana
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Stephen T. Morris
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| | - Hugh T. Blair
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (P.R.K.); (N.L.-V.); (J.M.D.R.J.); (S.T.M.); (H.T.B.)
| |
Collapse
|
4
|
Fujiwara M, Imamura M, Matsushita K, Roszak P, Yamashino T, Hosokawa Y, Nakajima K, Fujimoto K, Miyashima S. Patterned proliferation orients tissue-wide stress to control root vascular symmetry in Arabidopsis. Curr Biol 2023; 33:886-898.e8. [PMID: 36787744 DOI: 10.1016/j.cub.2023.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Symmetric tissue alignment is pivotal to the functions of plant vascular tissue, such as long-distance molecular transport and lateral organ formation. During the vascular development of the Arabidopsis roots, cytokinins initially determine cell-type boundaries among vascular stem cells and subsequently promote cell proliferation to establish vascular tissue symmetry. Although it is unknown whether and how the symmetry of initially defined boundaries is progressively refined under tissue growth in plants, such boundary shapes in animal tissues are regulated by cell fluidity, e.g., cell migration and intercalation, lacking in plant tissues. Here, we uncover that cell proliferation during vascular development produces anisotropic compressive stress, smoothing, and symmetrizing cell arrangement of the vascular-cell-type boundary. Mechanistically, the GATA transcription factor HANABA-TARANU cooperates with the type-B Arabidopsis response regulators to form an incoherent feedforward loop in cytokinin signaling. The incoherent feedforward loop fine-tunes the position and frequency of vascular cell proliferation, which in turn restricts the source of mechanical stress to the position distal and symmetric to the boundary. By combinatorial analyses of mechanical simulations and laser cell ablation, we show that the spatially constrained environment of vascular tissue efficiently entrains the stress orientation among the cells to produce a tissue-wide stress field. Together, our data indicate that the localized proliferation regulated by the cytokinin signaling circuit is decoded into a globally oriented mechanical stress to shape the vascular tissue symmetry, representing a reasonable mechanism controlling the boundary alignment and symmetry in tissue lacking cell fluidity.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Miyu Imamura
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki 00014, Helsinki, Finland
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan.
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
5
|
Esmaeili J, Barati A, Charelli LE. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 2022:10.1007/s10047-022-01360-1. [PMID: 36125581 DOI: 10.1007/s10047-022-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.,Tissue Engineering Department, TISSUEHUB Co., Tehran, Iran
| | - Aboulfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Letícia Emiliano Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Cobham AE, Neumann B, Mirth CK. Maintaining robust size across environmental conditions through plastic brain growth dynamics. Open Biol 2022; 12:220037. [PMID: 36102061 PMCID: PMC9471992 DOI: 10.1098/rsob.220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organ growth is tightly regulated across environmental conditions to generate an appropriate final size. While the size of some organs is free to vary, others need to maintain constant size to function properly. This poses a unique problem: how is robust final size achieved when environmental conditions alter key processes that regulate organ size throughout the body, such as growth rate and growth duration? While we know that brain growth is ‘spared’ from the effects of the environment from humans to fruit flies, we do not understand how this process alters growth dynamics across brain compartments. Here, we explore how this robustness in brain size is achieved by examining differences in growth patterns between the larval body, the brain and a brain compartment—the mushroom bodies—in Drosophila melanogaster across both thermal and nutritional conditions. We identify key differences in patterns of growth between the whole brain and mushroom bodies that are likely to underlie robustness of final organ shape. Further, we show that these differences produce distinct brain shapes across environments.
Collapse
Affiliation(s)
- Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Nogueira Alves A, Oliveira MM, Koyama T, Shingleton A, Mirth CK. Ecdysone coordinates plastic growth with robust pattern in the developing wing. eLife 2022; 11:72666. [PMID: 35261337 PMCID: PMC8947767 DOI: 10.7554/elife.72666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Animals develop in unpredictable, variable environments. In response to environmental change, some aspects of development adjust to generate plastic phenotypes. Other aspects of development, however, are buffered against environmental change to produce robust phenotypes. How organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we demonstrate that the steroid hormone ecdysone coordinates both plasticity of organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Using fed and starved larvae that lack prothoracic glands, which synthesize ecdysone, we show that nutrition regulates growth both via ecdysone and via an ecdysone-independent mechanism, while nutrition regulates patterning only via ecdysone. We then demonstrate that growth shows a graded response to ecdysone concentration, while patterning shows a threshold response. Collectively, these data support a model where nutritionally regulated ecdysone fluctuations confer plasticity by regulating disc growth in response to basal ecdysone levels and confer robustness by initiating patterning only once ecdysone peaks exceed a threshold concentration. This could represent a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.
Collapse
Affiliation(s)
| | | | | | - Alexander Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
3D Culture Platform for Enabling Large-Scale Imaging and Control of Cell Distribution into Complex Shapes by Combining 3D Printing with a Cube Device. MICROMACHINES 2022; 13:mi13020156. [PMID: 35208281 PMCID: PMC8875915 DOI: 10.3390/mi13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022]
Abstract
While organoid differentiation protocols have been widely developed, local control of initial cell seeding position and imaging of large-scale organoid samples with high resolution remain challenging. 3D bioprinting is an effective method to achieve control of cell positioning, but existing methods mainly rely on the use of synthetic hydrogels that could compromise the native morphogenesis of organoids. To address this problem, we developed a 3D culture platform that combines 3D printing with a cube device to enable an unrestricted range of designs to be formed in biological hydrogels. We demonstrated the formation of channels in collagen hydrogel in the cube device via a molding process using a 3D-printed water-soluble mold. The mold is first placed in uncured hydrogel solution, then easily removed by immersion in water after the gel around it has cured, thus creating a mold-shaped gap in the hydrogel. At the same time, the difficulty in obtaining high-resolution imaging on a large scale can also be solved as the cube device allows us to scan the tissue sample from multiple directions, so that the imaging quality can be enhanced without having to rely on higher-end microscopes. Using this developed technology, we demonstrated (1) mimicking vascular structure by seeding HUVEC on the inner walls of helix-shaped channels in collagen gels, and (2) multi-directional imaging of the vascular structure in the cube device. Thus, this paper describes a concerted method that simultaneously allows for the precise control of cell positioning in hydrogels for organoid morphogenesis, and the imaging of large-sized organoid samples. It is expected that the platform developed here can lead to advancements in organoid technology to generate organoids with more sophisticated structures.
Collapse
|
9
|
Chakraborty A, Sgrò CM, Mirth CK. The proximate sources of genetic variation in body size plasticity: The relative contributions of feeding behaviour and development in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104321. [PMID: 34653505 DOI: 10.1016/j.jinsphys.2021.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Body size is a key life-history trait that influences many aspects of an animal's biology and is shaped by a variety of factors, both genetic and environmental. While we know that locally-adapted populations differ in the extent to which body size responds plastically to environmental conditions like diet, we have a limited understanding of what causes these differences. We hypothesized that populations could differ in the way body size responds to nutrition either by modulating growth rate, development time, feeding rate, or a combination of the above. Using three locally-adapted populations of Drosophila melanogaster from along the east coast of Australia, we investigated body size plasticity across five different diets. We then assessed how these populations differed in feeding behaviour and developmental timing on each of the diets. We observed population-specific plastic responses to nutrition for body size and feeding rate, but not development time. However, differences in feeding rate did not fully explain the differences in the way body size responded to diet. Thus, we conclude that body size variation in locally-adapted populations is shaped by a combination of growth rate and feeding behaviour. This paves the way for further studies that explore how differences in the regulation of the genetic pathways that control feeding behaviour and growth rate contribute to population-specific responses of body size to diet.
Collapse
Affiliation(s)
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
10
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|