1
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Takagi W, Sugahara F, Higuchi S, Kusakabe R, Pascual-Anaya J, Sato I, Oisi Y, Ogawa N, Miyanishi H, Adachi N, Hyodo S, Kuratani S. Thyroid and endostyle development in cyclostomes provides new insights into the evolutionary history of vertebrates. BMC Biol 2022; 20:76. [PMID: 35361194 PMCID: PMC8973611 DOI: 10.1186/s12915-022-01282-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endostyle is an epithelial exocrine gland found in non-vertebrate chordates (amphioxi and tunicates) and the larvae of modern lampreys. It is generally considered to be an evolutionary precursor of the thyroid gland of vertebrates. Transformation of the endostyle into the thyroid gland during the metamorphosis of lampreys is thus deemed to be a recapitulation of a past event in vertebrate evolution. In 1906, Stockard reported that the thyroid gland in hagfish, the sister cyclostome group of lampreys, develops through an endostyle-like primordium, strongly supporting the plesiomorphy of the lamprey endostyle. However, the findings in hagfish thyroid development were solely based on this single study, and these have not been confirmed by modern molecular, genetic, and morphological data pertaining to hagfish thyroid development over the last century. Results Here, we showed that the thyroid gland of hagfish undergoes direct development from the ventrorostral pharyngeal endoderm, where the previously described endostyle-like primordium was not found. The developmental pattern of the hagfish thyroid, including histological features and regulatory gene expression profiles, closely resembles that found in modern jawed vertebrates (gnathostomes). Meanwhile, as opposed to gnathostomes but similar to non-vertebrate chordates, lamprey and hagfish share a broad expression domain of Nkx2-1/2-4, a key regulatory gene, in the pharyngeal epithelium during early developmental stages. Conclusions Based on the direct development of the thyroid gland both in hagfish and gnathostomes, and the shared expression profile of thyroid-related transcription factors in the cyclostomes, we challenge the plesiomorphic status of the lamprey endostyle and propose an alternative hypothesis where the lamprey endostyle could be obtained secondarily in crown lampreys. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01282-7.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan. .,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan.,Present Address: Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Present Address: Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Nobuhiro Ogawa
- Laboratory Research Support Section, Center for Cooperative Research Promotion, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi, 889-2192, Japan
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Marseille, France.,Present address: Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan. .,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
| |
Collapse
|
3
|
Kusakabe R, Tanaka M, Kuratani S. Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Front Cell Dev Biol 2021; 9:760366. [PMID: 34650989 PMCID: PMC8505881 DOI: 10.3389/fcell.2021.760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution. Lampreys, extant jawless vertebrates, lack many of derived traits characteristic of the gnathostomes, such as jaws, paired fins and epaxial/hypaxial distinction of the trunk skeletal musculatures. However, these animals possess the primitive form of the hypobranchial muscle. Of the gnathostomes, the elasmobranchs exhibit developmental mode of hypaxial muscles that is not identical to that of other gnathostomes in that the muscle primordia relocate as coherent cell aggregates. Comparison of expression of developmental genes, including Lbx genes, has delineated the temporal order of differentiation of various skeletal muscles, such as the hypobranchial, posterior pharyngeal and cucullaris (trapezius) muscles. We have proposed that the sequential addition of distal muscles, associated with expression of duplicated Lbx genes, promoted the elaboration of skeletal musculature. These analyses have revealed the framework of an evolutionary pathway that gave rise to the morphological complexity and diversity of vertebrate body patterns.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| |
Collapse
|
4
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
5
|
Kuratani S. Evo-devo studies of cyclostomes and the origin and evolution of jawed vertebrates. Curr Top Dev Biol 2020; 141:207-239. [PMID: 33602489 DOI: 10.1016/bs.ctdb.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern vertebrates consist of two sister groups: cyclostomes and gnathostomes. Cyclostomes are a monophyletic jawless group that can be further divided into hagfishes and lampreys, which show conspicuously different developmental and morphological patterns. However, during early pharyngula development, there appears to be a stage when the embryos of hagfishes and lampreys resemble each other by showing an "ancestral" craniofacial pattern; this pattern enables morphological comparison of hagfish and lamprey craniofacial development at late stages. This cyclostome developmental pattern, or more accurately, this developmental pattern of the jawless grade of vertebrates in early pharyngula was very likely shared by the gnathostome stem before the division of the nasohypophyseal placode led to the jaw and paired nostrils. The craniofacial pattern of the modern jawed vertebrates seems to have begun in fossil ostracoderms (including galeaspids), and was completed by the early placoderm lineages. The transition from jawless to jawed vertebrates was thus driven by heterotopy of development, mainly caused by separation and shift of ectodermal placodes and resultant ectomesenchymal distribution, and shifts of the epithelial-mesenchymal interactions that underlie craniofacial differentiation. Thus, the evolution of the jaw was not a simple modification of the mandibular arch, but a heterotopic shift of the developmental interactions involving not only the mandibular arch, but also the premandibular region rostral to the mandibular arch.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan; Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Hyogo, Japan.
| |
Collapse
|
6
|
Miyashita T. A Paleozoic stem hagfish Myxinikela siroka — revised anatomy and implications for evolution of the living jawless vertebrate lineages. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2020-0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hagfishes and lampreys comprise cyclostomes, the earliest branching and sole surviving clade of the once diverse assemblage of jawless crown-group vertebrates. Lacking mineralized skeletons, both of the crown cyclostome lineages have notoriously poor fossil record. Particularly in the hagfish total group, †Myxinikela siroka Bardack, 1991 from the Late Carboniferous estuarine system of Illinois (USA) represents the only definitive stem taxon. Previously known from a single specimen, Myxinikela has been reconstructed as a short-bodied form with pigmented eyes but otherwise difficult to distinguish from the living counterpart. With a new, second specimen of Myxinikela reported here, I reevaluate the soft tissue anatomy and formulate diagnosis for the taxon. Myxinikela has a number of general features of cyclostomes, including cartilaginous branchial baskets, separation between the esophageal and the branchial passages, and a well-differentiated midline finfold. In effect, these features give more lamprey-like appearance to this stem hagfish than previously assumed. Myxinikela still has many traits that set modern hagfishes apart from other vertebrates (e.g., nasohypophyseal aperture, large velar cavity, and cardinal heart) and some intermediate conditions of modern hagfishes (e.g., incipient posterior displacement of branchial region). Thus, Myxinikela provides an important calibration point with which to date origins of these characters.
Collapse
Affiliation(s)
- Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
8
|
Kusakabe R, Higuchi S, Tanaka M, Kadota M, Nishimura O, Kuratani S. Novel developmental bases for the evolution of hypobranchial muscles in vertebrates. BMC Biol 2020; 18:120. [PMID: 32907560 PMCID: PMC7488077 DOI: 10.1186/s12915-020-00851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vertebrates are characterized by possession of hypobranchial muscles (HBMs). Cyclostomes, or modern jawless vertebrates, possess a rudimentary and superficial HBM lateral to the pharynx, whereas the HBM in jawed vertebrates is internalized and anteroposteriorly specified. Precursor cells of the HBM, marked by expression of Lbx1, originate from somites and undergo extensive migration before becoming innervated by the hypoglossal nerve. How the complex form of HBM arose in evolution is relevant to the establishment of the vertebrate body plan, but despite having long been assumed to be similar to that of limb muscles, modification of developmental mechanisms of HBM remains enigmatic. RESULTS Here we characterize the expression of Lbx genes in lamprey and hagfish (cyclostomes) and catshark (gnathostome; jawed vertebrates). We show that the expression patterns of the single cyclostome Lbx homologue, Lbx-A, do not resemble the somitic expression of mammalian Lbx1. Disruption of Lbx-A revealed that LjLbx-A is required for the formation of both HBM and body wall muscles, likely due to the insufficient extension of precursor cells rather than to hindered muscle differentiation. Both homologues of Lbx in the catshark were expressed in the somitic muscle primordia, unlike in amniotes. During catshark embryogenesis, Lbx2 is expressed in the caudal HBM as well as in the abdominal rectus muscle, similar to lamprey Lbx-A, whereas Lbx1 marks the rostral HBM and pectoral fin muscle. CONCLUSIONS We conclude that the vertebrate HBM primarily emerged as a specialized somatic muscle to cover the pharynx, and the anterior internalized HBM of the gnathostomes is likely a novelty added rostral to the cyclostome-like HBM, for which duplication and functionalization of Lbx genes would have been a prerequisite.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan
| |
Collapse
|
9
|
Graham A, Poopalasundaram S, Shone V, Kiecker C. A reappraisal and revision of the numbering of the pharyngeal arches. J Anat 2019; 235:1019-1023. [PMID: 31402457 DOI: 10.1111/joa.13067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 11/30/2022] Open
Abstract
The pharyngeal arches are a prominent and significant feature of vertebrate embryos. These are visible as a series of bulges on the lateral surface of the embryonic head. In humans, and other amniotes, there are five pharyngeal arches numbered 1, 2, 3, 4 and 6; note the missing '5'. This is the standard scheme for the numbering of these structures, and it is a feature of modern anatomy textbooks. In this article, we discuss the rationale behind this odd numbering, and consider its origins. One reason given is that there is a transient 5th arch that is never fully realized, while another is that this numbering reflects considerations from comparative anatomy. We show here, however, that neither of these reasons has substance. There is no evidence from embryology for a '5th' arch, and the comparative argument does not hold as it does not apply across the vertebrates. We conclude that there is no justification for this strange numbering. We suggest that the pharyngeal arches should simply be numbered 1, 2, 3, 4 and 5 as this would be in keeping with the embryology and with the general numbering of the pharyngeal arches across the vertebrates.
Collapse
Affiliation(s)
- Anthony Graham
- Department for Developmental Neurobiology, King's College London, London, UK
| | | | - Victoria Shone
- Department for Developmental Neurobiology, King's College London, London, UK
| | - Clemens Kiecker
- Department for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
10
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
11
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
12
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
13
|
Adachi N, Pascual-Anaya J, Hirai T, Higuchi S, Kuratani S. Development of hypobranchial muscles with special reference to the evolution of the vertebrate neck. ZOOLOGICAL LETTERS 2018; 4:5. [PMID: 29468087 PMCID: PMC5816939 DOI: 10.1186/s40851-018-0087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extant vertebrates include cyclostomes (lamprey and hagfish) and crown gnathostomes (jawed vertebrates), but there are various anatomical disparities between these two groups. Conspicuous in the gnathostomes is the neck, which occupies the interfacial domain between the head and trunk, including the occipital part of the cranium, the shoulder girdle, and the cucullaris and hypobranchial muscles (HBMs). Of these, HBMs originate from occipital somites to form the ventral pharyngeal and neck musculature in gnathostomes. Cyclostomes also have HBMs on the ventral pharynx, but lack the other neck elements, including the occipital region, the pectoral girdle, and cucullaris muscles. These anatomical differences raise questions about the evolution of the neck in vertebrates. RESULTS In this study, we observed developing HBMs as a basis for comparison between the two groups and show that the arrangement of the head-trunk interface in gnathostomes is distinct from that of lampreys. Our comparative analyses reveal that, although HBM precursors initially pass through the lateral side of the pericardium in both groups, the relative positions of the pericardium withrespect to the pharyngeal arches differ between the two, resulting in diverse trajectories of HBMs in gnathostomes and lampreys. CONCLUSIONS We suggest that a heterotopic rearrangement of early embryonic components, including the pericardium and pharyngeal arches, may have played a fundamental role in establishing the gnathostome HBMs, which would also have served as the basis for neck formation in the jawed vertebrate lineage.
Collapse
Affiliation(s)
- Noritaka Adachi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| | - Shinnosuke Higuchi
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
14
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
15
|
Naumann B, Warth P, Olsson L, Konstantinidis P. The development of the cucullaris muscle and the branchial musculature in the Longnose Gar, (Lepisosteus osseus, Lepisosteiformes, Actinopterygii) and its implications for the evolution and development of the head/trunk interface in vertebrates. Evol Dev 2017; 19:263-276. [PMID: 29027738 DOI: 10.1111/ede.12239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vertebrate head/trunk interface is the region of the body where the different developmental programs of the head and trunk come in contact. Many anatomical structures that develop in this transition zone differ from similar structures in the head or the trunk. This is best exemplified by the cucullaris/trapezius muscle, spanning the head/trunk interface by connecting the head to the pectoral girdle. The source of this muscle has been claimed to be either the unsegmented head mesoderm or the somites of the trunk. However most recent data on the development of the cucullaris muscle are derived from tetrapods and information from actinopterygian taxa is scarce. We used classical histology in combination with fluorescent whole-mount antibody staining and micro-computed tomography to investigate the developmental pattern of the cucullaris and the branchial muscles in a basal actinopterygian, the Longnose gar (Lepisosteus osseus). Our results show (1) that the cucullaris has been misidentified in earlier studies on its development in Lepisosteus. (2) Cucullaris development is delayed compared to other head and trunk muscles. (3) This developmental pattern of the cucullaris is similar to that reported from some tetrapod taxa. (4) That the retractor dorsalis muscle of L. osseus shows a delayed developmental pattern similar to the cucullaris. Our data are in agreement with an explanatory scenario for the cucullaris development in tetrapods, suggesting that these mechanisms are conserved throughout the Osteichthyes. Furthermore the developmental pattern of the retractor dorsalis, also spanning the head/trunk interface, seems to be controlled by similar mechanisms.
Collapse
Affiliation(s)
- Benjamin Naumann
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Peter Warth
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany
| | - Peter Konstantinidis
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
| |
Collapse
|
16
|
Weinrauch AM, Clifford AM, Goss GG. Post-prandial physiology and intestinal morphology of the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2017; 188:101-112. [DOI: 10.1007/s00360-017-1118-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022]
|
17
|
Kuratani S, Fukatsu T. Paleontological Studies Integrated into a New Evolutionary Zoology. Zoolog Sci 2017; 34:1-4. [PMID: 28148209 DOI: 10.2108/zs160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zoological Letters, an open access online journal launched in 2015 is entering its third year of publication, and now seeks to drive new insights in evolutionary and comparative zoology by the inclusion of paleontological studies into its scope.
Collapse
Affiliation(s)
- Shigeru Kuratani
- 1 Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Takema Fukatsu
- 2 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| |
Collapse
|
18
|
Hirasawa T, Oisi Y, Kuratani S. Palaeospondylus as a primitive hagfish. ZOOLOGICAL LETTERS 2016; 2:20. [PMID: 27610240 PMCID: PMC5015246 DOI: 10.1186/s40851-016-0057-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND The taxonomic position of the Middle Devonian fish-like animal Palaeospondylus has remained enigmatic, due mainly to the inability to identify homologous cranial elements. This animal has been classified into nearly all of the major vertebrate taxa over a century of heuristic taxonomic research, despite the lack of conclusive morphological evidence. RESULTS Here we report the first comparative morphological analysis of hagfish embryos and Palaeospondylus, and a hitherto overlooked resemblance in the chondrocranial elements of these animals; i.e., congruence in the arrangement of the nasal capsule, neurocranium and mandibular arch-derived velar bar. The large ventral skeletal complex of Palaeospondylus is identified as a cyclostome-specific lingual apparatus. Importantly, the overall morphological pattern of the Palaeospondylus cranium coincides well with the cyclostome pattern of craniofacial development, which is not shared with that of crown gnathostomes. Previously, the presence of the vertebral column in Palaeospondylus made its assignment problematic, but the recent identification of this vertebral element in hagfish is consistent with an affinity between this group and Palaeospondylus. CONCLUSION These lines of evidence support the hagfish affinity of Palaeospondylus. Moreover, based on the less specialized features in its cranial morphology, we conclude that Palaeospondylus is likely a stem hagfish.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458 USA
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
19
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
21
|
Higashiyama H, Hirasawa T, Oisi Y, Sugahara F, Hyodo S, Kanai Y, Kuratani S. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface. J Morphol 2016; 277:1146-58. [PMID: 27216138 DOI: 10.1002/jmor.20563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.,Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| |
Collapse
|
22
|
Abstract
A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.
Collapse
Affiliation(s)
- Takema Fukatsu
- 1 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Shigeru Kuratani
- 2 Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| |
Collapse
|
23
|
Li Z, Clarke JA. New insight into the anatomy of the hyolingual apparatus of Alligator mississippiensis and implications for reconstructing feeding in extinct archosaurs. J Anat 2015; 227:45-61. [PMID: 26018316 DOI: 10.1111/joa.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 10/23/2022] Open
Abstract
Anatomical studies of the cranium of crocodilians motivated by an interest in its function in feeding largely focused on bite force, the jaw apparatus and associated muscles innervated by the trigeminal nerve. However, the ossified and cartilaginous elements of the hyoid and the associated hyolingual muscles, innervated by the facial, hypoglossal and glossopharyngeal nerves, received much less attention. Crocodilians are known to retain what are ancestrally the 'Rhythmic Hyobranchial Behaviors' such as buccal oscillation, but show diminished freedom and movement for the hyobranchial apparatus and the tongue in food transport and manipulation. Feeding among crocodilians, generally on larger prey items than other reptilian outgroups, involves passive transport of the food within the mouth. The tongue in extant crocodilians is firmly attached to the buccal floor and shows little movement during feeding. Here, we present a detailed anatomical description of the myology of the hyolingual apparatus of Alligator mississippiensis, utilizing contrast-enhanced micro-computed tomography and dissection. We construct the first three-dimensional (3D) description of hyolingual myology in Alligator mississippiensis and discuss the detailed implications of these data for our understanding of hyolingual muscle homology across Reptilia. These anatomical data and an evaluation of the fossil record of hyoid structures also shed light on the evolution of feeding in Reptilia. Simplification of the hyoid occurs early in the evolution of archosaurs. A hyoid with only one pair of ceratobranchials and a weakly ossified or cartilaginous midline basihyal is ancestral to Archosauriformes. The comparison with non-archosaurian reptilian outgroup demonstrates that loss of the second set of ceratobranchials as well as reduced ossification in basihyal occurred prior to the origin of crown-clade archosaurs, crocodilians and birds. Early modification in feeding ecology appears to characterize the early evolution of the clade. Hyoid simplification has been linked to ingestion of large prey items, and this shift in hyoid-related feeding ecology may occur in early archosauriform evolution. A second transformation in hyoid morphology occurs within the crocodilian stem lineage after the split from birds. In Crocodyliformes, deflections in the ceratobrachials become more pronounced. The morphology of the hyoid in Archosauriformes indicates that aspects of the hyolingual apparatus in extant crocodilians are derived, including a strong deflection near the midpoint of the ceratobranchials, and their condition should not be treated as ancestral for Archosauria.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
24
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|