1
|
Graham A, Hikspoors JPJM, Anderson RH, Lamers WH, Bamforth SD. A revised terminology for the pharyngeal arches and the arch arteries. J Anat 2023; 243:564-569. [PMID: 37248750 PMCID: PMC10485586 DOI: 10.1111/joa.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos. In humans, and other amniotes, there are five pharyngeal arches and traditionally these have been labelled from cranial to caudal-1, 2, 3, 4 and 6. This numbering is odd-there is no '5'. Two reasons have been given for this. One is that during development, a 'fifth' arch forms transiently but is not fully realised. The second is that this numbering fits with the evolutionary history of the pharyngeal arches. Recent studies, however, have shown that neither of these justifications have basis. The traditional labelling is problematic as it causes confusion to those trying to understand the development of the pharyngeal arches. In particular, it creates difficulties in the field of congenital cardiac malformations, where it is common to find congenital cardiac lesions interpreted on the basis of persistence of the postulated arteries of the fifth arch. To resolve these problems and to take account of the recent studies that have clarified pharyngeal arch development, we propose a new terminology for the pharyngeal arches. In this revised scheme, the pharyngeal arches are to be labelled as follows-the first, most cranial, the mandibular (M), the second, the hyoid (H), the third, the carotid (C), the fourth, the aortic (A) and the last, most caudal, the pulmonary (P).
Collapse
Affiliation(s)
- Anthony Graham
- Centre for Developmental Neurobiology, King's College LondonLondonUK
| | | | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle University, Centre for LifeNewcastleUK
| | - Wouter H. Lamers
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtERThe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle University, Centre for LifeNewcastleUK
| |
Collapse
|
2
|
Pitirri MK, Durham EL, Romano NA, Santos JI, Coupe AP, Zheng H, Chen DZ, Kawasaki K, Jabs EW, Richtsmeier JT, Wu M, Motch Perrine SM. Meckel's Cartilage in Mandibular Development and Dysmorphogenesis. Front Genet 2022; 13:871927. [PMID: 35651944 PMCID: PMC9149363 DOI: 10.3389/fgene.2022.871927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Fgfr2cC342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel’s cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2cC342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c+/+). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2cC342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2cC342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2cC342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2cC342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Natalie A Romano
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Jacob I Santos
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Kameda Y. Comparative morphological and molecular studies on the oxygen-chemoreceptive cells in the carotid body and fish gills. Cell Tissue Res 2021; 384:255-273. [PMID: 33852077 DOI: 10.1007/s00441-021-03421-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
Oxygen-chemoreceptive cells play critical roles for the respiration control. This review summarizes the chemoreceptive cells in the carotid body and fish gills from a morphological and molecular perspective. The cells synthesize and secrete biogenic amines, neuropeptides, and neuroproteins and also express many signaling molecules and transcription factors. In mammals, birds, reptiles, and amphibians, the carotid body primordium is consistently formed in the wall of the third arch artery which gives rise to the common carotid artery and the basal portion of the internal carotid artery. Consequently, the carotid body is located in the carotid bifurcation region, except birds in which the organ is situated at the lateral side of the common carotid artery. The carotid body receives branches of the cranial nerves IX and/or X dependent on the location of the organ. The glomus cell progenitors in mammals and birds are derived from the neighboring ganglion, i.e., the superior cervical sympathetic ganglion and the nodose ganglion, respectively, and immigrate into the carotid body primordium, constituting a solid cell cluster. In other animal species, the glomus cells are dispersed singly or forming small cell groups in intervascular stroma of the carotid body. In fishes, the neuroepithelial cells, corresponding to the glomus cells, are distributed in the gill filaments and lamellae. All oxygen-chemoreceptive cells sensitively respond to acute or chronic hypoxia, exhibiting degranulation, hypertrophy, hyperplasia, and upregulated expression of many genes.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
4
|
Graham A, Poopalasundaram S, Shone V, Kiecker C. A reappraisal and revision of the numbering of the pharyngeal arches. J Anat 2019; 235:1019-1023. [PMID: 31402457 DOI: 10.1111/joa.13067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 11/30/2022] Open
Abstract
The pharyngeal arches are a prominent and significant feature of vertebrate embryos. These are visible as a series of bulges on the lateral surface of the embryonic head. In humans, and other amniotes, there are five pharyngeal arches numbered 1, 2, 3, 4 and 6; note the missing '5'. This is the standard scheme for the numbering of these structures, and it is a feature of modern anatomy textbooks. In this article, we discuss the rationale behind this odd numbering, and consider its origins. One reason given is that there is a transient 5th arch that is never fully realized, while another is that this numbering reflects considerations from comparative anatomy. We show here, however, that neither of these reasons has substance. There is no evidence from embryology for a '5th' arch, and the comparative argument does not hold as it does not apply across the vertebrates. We conclude that there is no justification for this strange numbering. We suggest that the pharyngeal arches should simply be numbered 1, 2, 3, 4 and 5 as this would be in keeping with the embryology and with the general numbering of the pharyngeal arches across the vertebrates.
Collapse
Affiliation(s)
- Anthony Graham
- Department for Developmental Neurobiology, King's College London, London, UK
| | | | - Victoria Shone
- Department for Developmental Neurobiology, King's College London, London, UK
| | - Clemens Kiecker
- Department for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
5
|
Parker HJ, Bronner ME, Krumlauf R. An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. Dev Biol 2019; 453:19-33. [PMID: 31071313 DOI: 10.1016/j.ydbio.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
In the hindbrain and the adjacent cranial neural crest (NC) cells of jawed vertebrates (gnathostomes), nested and segmentally-restricted domains of Hox gene expression provide a combinatorial Hox-code for specifying regional properties during head development. Extant jawless vertebrates, such as the sea lamprey (Petromyzon marinus), can provide insights into the evolution and diversification of this Hox-code in vertebrates. There is evidence for gnathostome-like spatial patterns of Hox expression in lamprey; however, the expression domains of the majority of lamprey hox genes from paralogy groups (PG) 1-4 are yet to be characterized, so it is unknown whether they are coupled to hindbrain segments (rhombomeres) and NC. In this study, we systematically describe the spatiotemporal expression of all 14 sea lamprey hox genes from PG1-PG4 in the developing hindbrain and pharynx to investigate the extent to which their expression conforms to the archetypal gnathostome hindbrain and pharyngeal hox-codes. We find many similarities in Hox expression between lamprey and gnathostome species, particularly in rhombomeric domains during hindbrain segmentation and in the cranial neural crest, enabling inference of aspects of Hox expression in the ancestral vertebrate embryonic head. These data are consistent with the idea that a Hox regulatory network underlying hindbrain segmentation is a pan vertebrate trait. We also reveal differences in hindbrain domains at later stages, as well as expression in the endostyle and in pharyngeal arch (PA) 1 mesoderm. Our analysis suggests that many Hox expression domains that are observed in extant gnathostomes were present in ancestral vertebrates but have been partitioned differently across Hox clusters in gnathostome and cyclostome lineages after duplication.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
6
|
Poopalasundaram S, Richardson J, Scott A, Donovan A, Liu K, Graham A. Diminution of pharyngeal segmentation and the evolution of the amniotes. ZOOLOGICAL LETTERS 2019; 5:6. [PMID: 30788138 PMCID: PMC6369561 DOI: 10.1186/s40851-019-0123-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/05/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos, and it is within these segments that components of the later anatomy are laid down. In most vertebrates, the post-otic pharyngeal arches will form the branchial apparatus, while in amniotes these segments are believed to generate the larynx. It has been unclear how the development of these segments has been altered with the emergence of the amniotes. RESULTS In this study, we examined the development of pharyngeal arches in amniotes and show that the post-otic pharyngeal arches in this clade are greatly diminished. We find that the post-otic segments do not undergo myogenesis or skeletogenesis, but are remodelled before these processes occur. We also find that nested DLX expression, which is a feature of all the pharyngeal arches in anamniotes, is associated with the anterior segments but less so with the posterior arches in amniotes. We further show that the posterior arches of the mouse embryo fail to properly delineate, which demonstrates the lack of function of these posterior segments in later development. CONCLUSION In amniotes, there has been a loss of the ancestral "branchial" developmental programme that is a general feature of gnathostomes; myogenesis and skeletogenesis This is likely to have facilitated the emergence of the larynx as a new structure not constrained by the segmental organisation of the posterior pharyngeal region.
Collapse
Affiliation(s)
| | - Jo Richardson
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Annabelle Scott
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Alex Donovan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 1UL UK
| | - Karen Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 1UL UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, King’s College London, London, UK
| |
Collapse
|
7
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
8
|
Kameda Y. Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev Dyn 2017; 246:719-739. [PMID: 28608500 DOI: 10.1002/dvdy.24534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current understanding of the nonmammalian ultimobranchial gland from morphological and molecular perspectives. Ultimobranchial anlage of all animal species develops from the last pharyngeal pouch. The genes involved in the development of pharyngeal pouches are well conserved across vertebrates. The ultimobranchial anlage of nonmammalian vertebrates and monotremes does not merge with the thyroid, remaining as an independent organ throughout adulthood. Although C cells of all animal species secrete calcitonin, the shape, cellular components and location of the ultimobranchial gland vary from species to species. Avian ultimobranchial gland is unique in several phylogenic aspects; the organ is located between the vagus and recurrent laryngeal nerves at the upper thorax and is densely innervated by branches emanating from them. In chick embryos, TuJ1-, HNK-1-, and PGP 9.5-immunoreactive cells that originate from the distal vagal (nodose) ganglion, colonize the ultimobranchial anlage and differentiate into C cells; neuronal cells give rise to C cells. Like C cells of mammals, the cells of fishes, amphibians, reptiles, and also a subset of C cells of birds, appear to be derived from the endodermal epithelium forming ultimobranchial anlage. Thus, the avian ultimobranchial C cells may have dual origins, neural progenitors and endodermal epithelium. Developmental Dynamics 246:719-739, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
9
|
Kuratani S, Fukatsu T. Paleontological Studies Integrated into a New Evolutionary Zoology. Zoolog Sci 2017; 34:1-4. [PMID: 28148209 DOI: 10.2108/zs160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zoological Letters, an open access online journal launched in 2015 is entering its third year of publication, and now seeks to drive new insights in evolutionary and comparative zoology by the inclusion of paleontological studies into its scope.
Collapse
Affiliation(s)
- Shigeru Kuratani
- 1 Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Takema Fukatsu
- 2 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| |
Collapse
|
10
|
Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y. Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 2017; 144:1629-1634. [DOI: 10.1242/dev.144436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 01/10/2023]
Abstract
The pharynx, possessing gill slits and the endostyle, is a characteristic of chordates that is a complex of multiple tissues well organized along the anterior-posterior (AP) axis. Although Hox genes show AP coordinated expression in the pharyngeal endoderm, tissue specific roles of these factors for establishing the regional identities within this tissue is largely unknown. Here, we show that Hox1 is essential for the establishment of AP axial identity of the endostyle, a major structure of the pharyngeal endoderm, in the ascidian Ciona intestinalis. We found that Hox1 knockout causes posterior to anterior transformation of the endostyle identity, and Hox1 represses Otx expression and anterior identity, and vice versa. Furthermore, alteration of the regional identity of the endostyle disrupts the formation of body wall muscles, suggesting that the endodermal axial identity is essential for the coordinated pharyngeal development. Our results reveal an essential role of Hox genes for establishment of the AP regional identity in the pharyngeal endoderm and crosstalk between endoderm and mesoderm for the development of chordate pharynx.
Collapse
Affiliation(s)
- Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Azusa Nakahata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
11
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|