1
|
Leyhr J, Waldmann L, Filipek-Górniok B, Zhang H, Allalou A, Haitina T. A novel cis-regulatory element drives early expression of Nkx3.2 in the gnathostome primary jaw joint. eLife 2022; 11:e75749. [PMID: 36377467 PMCID: PMC9665848 DOI: 10.7554/elife.75749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.
Collapse
Affiliation(s)
- Jake Leyhr
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Laura Waldmann
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Beata Filipek-Górniok
- Science for Life Laboratory Genome Engineering Zebrafish Facility, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Tatjana Haitina
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Waldmann L, Leyhr J, Zhang H, Öhman-Mägi C, Allalou A, Haitina T. The broad role of Nkx3.2 in the development of the zebrafish axial skeleton. PLoS One 2021; 16:e0255953. [PMID: 34411150 PMCID: PMC8376051 DOI: 10.1371/journal.pone.0255953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.2 knockdown and overexpression studies in non-mammalian gnathostomes have focused on its role in primary jaw joint development, while the function of this gene in broader skeletal development is not fully described. We generated a mutant allele of nkx3.2 in zebrafish with CRISPR/Cas9 and applied a range of techniques to characterize skeletal phenotypes at developmental stages from larva to adult, revealing loss of the jaw joint, fusions in bones of the occiput, morphological changes in the Weberian apparatus, and the loss or deformation of bony elements derived from basiventral cartilages of the vertebrae. Axial phenotypes are reminiscent of Nkx3.2 knockout in mammals, suggesting that the function of this gene in axial skeletal development is ancestral to osteichthyans. Our results highlight the broad role of nkx3.2 in zebrafish skeletal development and its context-specific functions in different skeletal elements.
Collapse
Affiliation(s)
- Laura Waldmann
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Lukas P. Larval cranial anatomy of the Eastern Ghost Frog (
Heleophryne orientalis
). ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paul Lukas
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Haeckel‐Haus und Biologiedidaktik Friedrich‐Schiller‐University Jena Germany
| |
Collapse
|
5
|
Miyashita T, Baddam P, Smeeton J, Oel AP, Natarajan N, Gordon B, Palmer AR, Crump JG, Graf D, Allison WT. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. J Exp Biol 2020; 223:jeb216945. [PMID: 32527964 PMCID: PMC10668335 DOI: 10.1242/jeb.216945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
The vertebrate jaw is a versatile feeding apparatus. To function, it requires a joint between the upper and lower jaws, so jaw joint defects are often highly disruptive and difficult to study. To describe the consequences of jaw joint dysfunction, we engineered two independent null alleles of a single jaw joint marker gene, nkx3.2, in zebrafish. These mutations caused zebrafish to become functionally jawless via fusion of the upper and lower jaw cartilages (ankylosis). Despite lacking jaw joints, nkx3.2 mutants survived to adulthood and accommodated this defect by: (a) having a remodeled skull with a fixed open gape, reduced snout and enlarged branchial region; and (b) performing ram feeding in the absence of jaw-generated suction. The late onset and broad extent of phenotypic changes in the mutants suggest that modifications to the skull are induced by functional agnathia, secondarily to nkx3.2 loss of function. Interestingly, nkx3.2 mutants superficially resemble ancient jawless vertebrates (anaspids and furcacaudiid thelodonts) in overall head shape. Because no homology exists in individual skull elements between these taxa, the adult nkx3.2 phenotype is not a reversal but rather a convergence due to similar functional requirements of feeding without moveable jaws. This remarkable analogy strongly suggests that jaw movements themselves dramatically influence the development of jawed vertebrate skulls. Thus, these mutants provide a unique model with which to: (a) investigate adaptive responses to perturbation in skeletal development; (b) re-evaluate evolutionarily inspired interpretations of phenocopies generated by gene knockdowns and knockouts; and (c) gain insight into feeding mechanics of the extinct agnathans.
Collapse
Affiliation(s)
- Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2R3
| | - Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - A Phil Oel
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brogan Gordon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - A Richard Palmer
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2R3
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2R7
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2R7
| |
Collapse
|
6
|
Lukas P, Olsson L. Sequence of chondrocranial development in the oriental fire bellied toad Bombina orientalis. J Morphol 2020; 281:688-701. [PMID: 32383540 DOI: 10.1002/jmor.21138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/18/2023]
Abstract
The vertebrate head as a major novelty is directly linked to the evolutionary success of the vertebrates. Sequential information on the embryonic pattern of cartilaginous head development are scarce, but important for the understanding of its evolution. In this study, we use the oriental fire bellied toad, Bombina orientalis, a basal anuran to investigate the sequence and timing of larval cartilaginous development of the head skeleton from the appearance of mesenchymal Anlagen in post-neurulation stages until the premetamorphic larvae. We use different methodological approaches like classic histology, clearing and staining, and antibody staining to examine the larval skeletal morphology. Our results show that in contrast to other vertebrates, the ceratohyals are the first centers of chondrification. They are followed by the palatoquadrate and the basihyal. The latter later fuses to the ceratohyal and the branchial basket. Anterior elements like Meckel's cartilage and the rostralia are delayed in development and alter the ancestral anterior posterior pattern observed in other vertebrates. The ceratobranchials I-IV, components of the branchial basket, follow this strict anterior-posterior pattern of chondrification as reported in other amphibians. Chondrification of different skeletal elements follows a distinct pattern and the larval skeleton is nearly fully developed at Gosner Stage 28. We provide baseline data on the pattern and timing of early cartilage development in a basal anuran species, which may serve as guidance for further experimental studies in this species as well as an important basis for the understanding of the evolutionary changes in head development among amphibians and vertebrates.
Collapse
Affiliation(s)
- Paul Lukas
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-University, Jena, Germany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
7
|
Lukas P, Olsson L. Bapx1
is required for jaw joint development in amphibians. Evol Dev 2018; 20:192-206. [DOI: 10.1111/ede.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paul Lukas
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Haeckel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Haeckel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|