1
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Tanaka Y, Okayama S, Urakawa K, Kudoh H, Ansai S, Abe G, Tamura K. Anterior-posterior constraint on Hedgehog signaling by hhip in teleost fin elaboration. Development 2024; 151:dev202526. [PMID: 39417578 DOI: 10.1242/dev.202526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Pectoral fins, the anterior paired fins in fish, have enhanced maneuvering abilities due to morphological changes. Teleosts have fewer radial bones in their pectoral fins than basal species, resulting in more-elaborate fins. The mechanism behind this radial constraint change in teleosts is unclear. Here, we found that mutations in hhip, which encodes an antagonist of Hedgehog signaling, led to an increase in radial bones in a localized region. Expression of the Shh genes, encoding ligands of Hedgehog signaling, coincided with notable hhip expression specifically during early development. We suggest that a negative feedback effect of Hedgehog signaling by hhip regulates the constraint of the pectoral fin in zebrafish. Additionally, re-analysis of hhip-related gene expression data in zebrafish and basal species revealed that the notable hhip expression during early development is a characteristic of zebrafish that is not observed in basal species. Region-specific expression of Hox13 genes in the zebrafish pectoral fin indicated that the median region, analogous to the region with abundant radials in basal species, is expanded in hhip-/- zebrafish. These data underscore potential morphological evolution through constrained diversity.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Shun Okayama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohei Urakawa
- Department of Developmental Biology, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan
| | - Hidehiro Kudoh
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Tanaka Y, Miura H, Tamura K, Abe G. Morphological evolution and diversity of pectoral fin skeletons in teleosts. ZOOLOGICAL LETTERS 2022; 8:13. [PMID: 36435818 PMCID: PMC9701400 DOI: 10.1186/s40851-022-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The Teleostei class has the most species of the fishes. Members of this group have pectoral fins, enabling refined movements in the water. Although teleosts live in a diverse set of environments, the skeletal pattern of pectoral fins in teleosts is considered to show little morphological variability. Here, in order to elucidate variations in pectoral fin skeletons and to identify their evolutionary processes, we compared the pectoral fin skeletons from 27 species of teleosts. We identified several variations and a diversity of pectoral fin skeletal patterns within some teleost groups. Taken together with previous reports on teleost skeletons, our findings reveal that in the course of teleost evolution, there are a mixture of conserved and non-conserved components in the pectoral fin skeletons of teleosts, and that teleosts may have experienced the variation and conservation of the number and shape of the proximal radials, the loss of the mesocoracoid, and the change in the distal radial-fin ray relationship.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan.
| | - Hiroki Miura
- Asamushi Aquarium. Asamushi, Aomori, 039-3501, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-Cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
4
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
5
|
Navon D, Hatini P, Zogbaum L, Albertson RC. The genetic basis of coordinated plasticity across functional units in a Lake Malawi cichlid mapping population. Evolution 2021; 75:672-687. [PMID: 33438760 DOI: 10.1111/evo.14157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Adaptive radiations are often stereotypical, as populations repeatedly specialize along conserved environmental axes. Phenotypic plasticity may be similarly stereotypical, as individuals respond to environmental cues. These parallel patterns of variation, which are often consistent across traits, have led researchers to propose that plasticity can facilitate predictable patterns of evolution along environmental gradients. This "flexible stem" model of evolution raises questions about the genetic nature of plasticity, including how complex is the genetic basis for plasticity? Is plasticity across traits mediated by many distinct loci, or few "global" regulators? To address these questions, we reared a hybrid cichlid mapping population on alternate diet regimes mimicking an important environmental axis. We show that plasticity across an array of ecologically relevant traits is generally morphologically integrated, such that traits respond in a coordinated manner, especially those with overlapping function. Our genetic data are more ambiguous. While our mapping experiment provides little evidence for global genetic regulators of plasticity, these data do contain a genetic signal for the integration of plasticity across traits. Overall, our data suggest a compromise between genetic modularity, whereby plasticity may evolve independently across traits, and low level but widespread genetic integration, establishing the potential for plasticity to experience coordinated evolution.
Collapse
Affiliation(s)
- Dina Navon
- Graduate Program in Organismal & Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Rutgers University Human Genetics Institute, Piscataway, New Jersey, 08854
| | - Paul Hatini
- Department of Biology, Morrill Science Center, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Lily Zogbaum
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, 19081
| | - R Craig Albertson
- Graduate Program in Organismal & Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Department of Biology, Morrill Science Center, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| |
Collapse
|
6
|
Yoshida K, Kawakami K, Abe G, Tamura K. Zebrafish can regenerate endoskeleton in larval pectoral fin but the regenerative ability declines. Dev Biol 2020; 463:110-123. [PMID: 32422142 DOI: 10.1016/j.ydbio.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/12/2023]
Abstract
We show for the first time endoskeletal regeneration in the developing pectoral fin of zebrafish. The developing pectoral fin contains an aggregation plate of differentiated chondrocytes (endochondral disc; primordium for endoskeletal components, proximal radials). The endochondral disc can be regenerated after amputation in the middle of the disc. The regenerated disc sufficiently forms endoskeletal patterns. Early in the process of regenerating the endochondral disc, epithelium with apical ectodermal ridge (AER) marker expression rapidly covers the amputation plane, and mesenchymal cells start to actively proliferate. Taken together with re-expression of a blastema marker gene, msxb, and other developmental genes, it is likely that regeneration of the endochondral disc recaptures fin development as epimorphic limb regeneration does. The ability of endoskeletal regeneration declines during larval growth, and adult zebrafish eventually lose the ability to regenerate endoskeletal components such that amputated endoskeletons become enlarged. Endoskeletal regeneration in the zebrafish pectoral fin will serve as a new model system for successful appendage regeneration in mammals.
Collapse
Affiliation(s)
- Keigo Yoshida
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|