1
|
Fenech M, Holland N, Zeiger E, Chang PW, Kirsch-Volders M, Bolognesi C, Stopper H, Knudsen LE, Knasmueller S, Nersesyan A, Thomas P, Dhillon V, Deo P, Franzke B, Andreassi MG, Laffon B, Wagner KH, Norppa H, da Silva J, Volpi EV, Wilkins R, Bonassi S. Objectives and achievements of the HUMN project on its 26th anniversary. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108511. [PMID: 39233049 DOI: 10.1016/j.mrrev.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
Collapse
Affiliation(s)
- Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, CA, USA.
| | | | - Peter Wushou Chang
- Show Chwan Memorial Hospital, Changhwa, Taiwan; TUFTS University Medical School, Boston, USA.
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97080, Germany.
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia.
| | - Varinderpal Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, and Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS 92010-000, Brazil; PPGBM, Federal University of Brazil (UFRGS), Porto Alegre 91501-970, Brazil.
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W6UW, UK.
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome 00166, Italy.
| |
Collapse
|
2
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|