1
|
Lucas S, Thomas SN. Therapeutic Immunomodulation of Tumor-Lymphatic Crosstalk via Intratumoral Immunotherapy. Mol Pharm 2024; 21:5929-5943. [PMID: 39478434 PMCID: PMC11615947 DOI: 10.1021/acs.molpharmaceut.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Intra- and peritumoral lymphatics and tumor-draining lymph nodes play major roles in mediating the adaptive immune response to cancer immunotherapy. Despite this, current paradigms of clinical cancer management seldom seek to therapeutically modulate tumor-lymphatic immune crosstalk. This review explores recent developments that set the stage for how this regulatory axis can be therapeutically manipulated, with a particular emphasis on tumor-localized immunomodulation. Building on this idea, the nature of tumor-lymphatic immune crosstalk and relevant immunotherapeutic targets and pathways are reviewed, with a focus on their translational potential. Engineered drug delivery systems that enhance intratumoral immunotherapy by improving drug delivery to both the tumor and lymph nodes are also highlighted.
Collapse
Affiliation(s)
- Samuel
N. Lucas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
| | - Susan N. Thomas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
of America
| |
Collapse
|
2
|
Okano S. Immunotherapy for head and neck cancer: Fundamentals and therapeutic development. Auris Nasus Larynx 2024; 51:684-695. [PMID: 38729034 DOI: 10.1016/j.anl.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) has been treated by multidisciplinary therapy consisting of surgery, radiotherapy, and cancer chemotherapy, but the recent advent of immunotherapy has produced significant changes in treatment systems and the results of these therapies. Immunotherapy has greatly improved the outcome of recurrent metastatic SCCHN, and the development of new treatment methods based on immunotherapy is now being applied not only to recurrent metastatic cases but also to locally advanced cases. To understand and practice cancer immunotherapy, it is important to understand the immune environment surrounding cancer, and the changes to which it is subject. Currently, the anti-PD-1 antibody drugs nivolumab and pembrolizumab are the only immunotherapies with proven efficacy in head and neck cancer. However, anti-PD-L1 and anti-CTLA-4 antibody drugs have also been shown to be useful in other types of cancer and are being incorporated into clinical practice. In head and neck cancer, numerous clinical trials have aimed to improve efficacy and safety by combining immunotherapy with other drug therapies and treatment modalities. Combinations of immunotherapy with cancer drugs with different mechanisms of action (cytotoxic agents, molecular-targeted agents, immune checkpoint inhibitors), as well as with radiation therapy and surgery are being investigated, and have the potential to significantly change medical care for these patients. The application of cancer immunotherapy not only to daily clinical practice but also to further therapeutic development requires a clear and complete understanding of the fundamentals of cancer immunotherapy, and knowledge of the numerous clinical studies conducted, both past and present. The results of these trials are numerous, both positive and negative, and a comprehensive understanding of this wide range of completed and ongoing clinical trials is critical to a systematic and comprehensive understanding of their scope and lessons learnt. In this article, after outlining the concepts of ``cancer immune cycle,'' ``cancer immune editing,'' and ``tumor microenvironment'' to provide an understanding of the basics of cancer immunity, we summarize the basics and clinical trial data on representative immune checkpoint inhibitors used in various cancer types, as well as recent therapeutic developments in cancer immunotherapy and the current status of these new treatments.
Collapse
Affiliation(s)
- Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
3
|
Wang C, Liu X, Nov P, Li L, Li C, Liao X, Li L, Du K, Li J. A signature based on circadian rhythm-associated genes for the evaluation of prognosis and the tumour microenvironment in HNSCC. Sci Rep 2024; 14:7594. [PMID: 38556542 PMCID: PMC10982303 DOI: 10.1038/s41598-024-57160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
The morbidity and mortality rates of head and neck squamous cell carcinoma (HNSCC) remain high worldwide. Therefore, there is an urgent need to identify a new prognostic biomarker to guide the personalized treatment of HNSCC patients. Increasing evidence suggests that circadian rhythm genes play an important role in the development and progression of cancer. We aimed to explore the value of circadian rhythm genes in predicting prognosis and guiding the treatment of HNSCC. We first obtained a list of circadian rhythm genes from previous research. The sequencing data were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Finally, univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox proportional hazard analysis were performed to develop a prognostic signature (Circadian Rhythm-Related Gene Prognostic Index, CRRGPI) consisting of nine circadian rhythm genes. The signature exhibited good performance in predicting overall survival. Patients with low CRRGPI scores had lower metabolic activities and an active antitumour immunity ability. Additionally, a clinical cohort was used to further evaluate the ability of the CRRGPI to predict the efficacy of immune checkpoint inhibitors. In conclusion, the novel circadian rhythm-related gene signature can provide a precise prognostic evaluation with the potential capacity to guide individualized treatment regimens for HNSCC patients.
Collapse
Affiliation(s)
- Changqian Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xiang Liu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Pengkhun Nov
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Lilin Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Chunhui Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Xuejiao Liao
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Luyao Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - Kunpeng Du
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China.
| | - Jiqiang Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
4
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
5
|
Abdel-Rahman SA, Świderek K, Gabr MT. First-in-class small molecule inhibitors of ICOS/ICOSL interaction as a novel class of immunomodulators. RSC Med Chem 2023; 14:1767-1777. [PMID: 37731692 PMCID: PMC10507805 DOI: 10.1039/d3md00150d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
The interaction of the inducible co-stimulator (ICOS) with its ligand (ICOSL) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. The ICOS/ICOSL pathway is a validated target for T-cell lymphomas induced by the proliferation of T-follicular helper (Tfh) cells. Moreover, the inhibition of ICOS/ICOSL interaction can decrease the enhancement of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. However, targeting ICOS/ICOSL interaction is currently restricted to monoclonal antibodies (mAbs) and there are no small molecules in existence that can block ICOS/ICOSL. To fill this gap, we report herein the first time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit ICOS/ICOSL interaction. Implementation of the developed TR-FRET assay in high-throughput screening (HTS) of a focused chemical library resulted in the identification of AG-120 as a first-in-class inhibitor of ICOS/ICOSL interaction. We further employed docking studies and molecular dynamics (MD) simulations to identify the plausible mechanism of blocking ICOS/ICOSL complex formation by AG-120. Using the structure-activity relationship (SAR) by catalog approach, we identified AG-120-X with an IC50 value of 4.68 ± 0.47 μM in the ICOS/ICOSL TR-FRET assay. Remarkably, AG-120-X revealed a dose-dependent ability to block ICOS/ICOSL interaction in a bioluminescent cellular assay based on co-culturing Jurkat T cells expressing ICOS and CHO-K1 cells expressing ICOSL. This work will pave the way for future drug discovery efforts aiming at the development of small molecule inhibitors of ICOS/ICOSL interaction as potential therapeutics for cancer as well as other diseases.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castellon Spain
| | - Moustafa T Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
| |
Collapse
|
6
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
7
|
Saddawi-Konefka R, Simon AB, Sumner W, Sharabi A, Mell LK, Cohen EEW. Defining the Role of Immunotherapy in the Curative Treatment of Locoregionally Advanced Head and Neck Cancer: Promises, Challenges, and Opportunities. Front Oncol 2021; 11:738626. [PMID: 34621678 PMCID: PMC8490924 DOI: 10.3389/fonc.2021.738626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Recent advancements in the development of immunotherapies have raised the hope for patients with locally-advanced HNSCC (LA-HNSCC) to achieve improved oncologic outcomes without the heavy burden of treatment-related morbidity. While there are several ongoing late phase clinical trials that seek to determine whether immunotherapy can be effectively employed in the definitive setting, initial results from concurrent immuno-radiotherapy therapy trials have not shown strong evidence of benefit. Encouragingly, evidence from preclinical studies and early-phase neoadjuvant studies have begun to show potential pathways forward, with therapeutic combinations and sequences that intentionally spare tumor draining lymphatics in order to maximize the synergy between definitive local therapy and immunotherapy. The intent of this review is to summarize the scientific rationale and current clinical evidence for employing immunotherapy for LA-HNSCC as well as the ongoing efforts and challenges to determine how to optimally deliver and sequence immunotherapy alongside traditional therapeutics. In both the preclinical and clinical settings, we will discuss the application of immunotherapies to both surgical and radiotherapeutic management of HNSCC.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, United States
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Aaron B. Simon
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Oncology, UC Irvine School of Medicine, Irvine, CA, United States
| | - Whitney Sumner
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Andrew Sharabi
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Loren K. Mell
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ezra E. W. Cohen
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
8
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Hsu YSO, Lu KL, Fu Y, Wang CW, Lu CW, Lin YF, Chang WC, Yeh KY, Hung SI, Chung WH, Chen CB. The Roles of Immunoregulatory Networks in Severe Drug Hypersensitivity. Front Immunol 2021; 12:597761. [PMID: 33717075 PMCID: PMC7953830 DOI: 10.3389/fimmu.2021.597761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The immunomodulatory effects of regulatory T cells (Tregs) and co-signaling receptors have gained much attention, as they help balance immunogenic and immunotolerant responses that may be disrupted in autoimmune and infectious diseases. Drug hypersensitivity has a myriad of manifestations, which ranges from the mild maculopapular exanthema to the severe Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DRESS/DIHS). While studies have identified high-risk human leukocyte antigen (HLA) allotypes, the presence of the HLA allotype at risk is not sufficient to elicit drug hypersensitivity. Recent studies have suggested that insufficient regulation by Tregs may play a role in severe hypersensitivity reactions. Furthermore, immune checkpoint inhibitors, such as anti-CTLA-4 or anti-PD-1, in cancer treatment also induce hypersensitivity reactions including SJS/TEN and DRESS/DIHS. Taken together, mechanisms involving both Tregs as well as coinhibitory and costimulatory receptors may be crucial in the pathogenesis of drug hypersensitivity. In this review, we summarize the currently implicated roles of co-signaling receptors and Tregs in delayed-type drug hypersensitivity in the hope of identifying potential pharmacologic targets.
Collapse
Affiliation(s)
- Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Lin Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yun Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuang-Wei Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Fen Lin
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Cheng Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Economopoulou P, Kotsantis I, Psyrri A. Tumor Microenvironment and Immunotherapy Response in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3377. [PMID: 33203092 PMCID: PMC7696050 DOI: 10.3390/cancers12113377] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) encompasses cellular and non-cellular components which play an important role in tumor evolution, invasion, and metastasis. A complicated interplay between tumor cells and adjacent TME cells, such as stromal cells, immune cells, inflammatory cells, and cytokines, leads to severe immunosuppression and the proliferation of cancer cells in several solid tumors. An immunosuppressive TME has a significant impact on treatment resistance and may guide response to immunotherapy. In head and neck cancer (HNC), immunotherapeutic drugs have been incorporated in everyday clinical practice. However, despite an exceptional rate of durable responses, only a low percentage of patients respond. In this review, we will focus on the complex interactions occurring in this dynamic system, the TME, which orchestrate key events that lead to tumor progression, immune escape, and resistance. Furthermore, we will summarize current clinical trials that depict the TME as a potential therapeutic target for improved patient selection.
Collapse
Affiliation(s)
| | | | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (I.K.)
| |
Collapse
|
11
|
Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo- and Immunotherapy. Int J Mol Sci 2020; 21:ijms21155181. [PMID: 32707816 PMCID: PMC7432918 DOI: 10.3390/ijms21155181] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endogenous control mechanisms, including immune checkpoints and immunosuppressive cells, are exploited in the process of tumorigenesis to weaken the anti-tumor immune response. Cancer treatment by chemotherapy or immune checkpoint inhibition can lead to changes of checkpoint expression, which influences therapy success. Peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) were isolated from head and neck squamous cell carcinoma (HNSCC) patients (n = 23) and compared to healthy donors (n = 23). Immune checkpoint expression (programmed cell death ligand 1 (PD-1), tumor necrosis factor receptor (TNFR)-related (GITR), CD137, tumor necrosis factor receptor superfamily member 4 (TNFRSF4) (OX40), t-cell immunoglobulin and mucin-domain containing-3 (TIM3), B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation gene 3 (LAG3)) was determined on immune cells by flow cytometry. PD-L1 expression was detected on tumor tissue by immunohistochemistry. Immune cells were treated with immuno- and chemotherapeutics to investigate treatment-specific change in immune checkpoint expression, in vitro. Specific changes of immune checkpoint expression were identified on PBL and TIL of HNSCC patients compared to healthy donors. Various chemotherapeutics acted differently on the expression of immune checkpoints. Changes of checkpoint expression were significantly less pronounced on regulatory T cells compared to other lymphocyte populations. Nivolumab treatment significantly reduced the receptor PD-1 on all analyzed T cell populations, in vitro. The specific immune checkpoint expression patterns in HNSCC patients and the investigated effects of immunomodulatory agents may improve the development and efficacy of targeted immunotherapy.
Collapse
|
12
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
13
|
Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol 2019; 99:104460. [PMID: 31683169 PMCID: PMC7749717 DOI: 10.1016/j.oraloncology.2019.104460] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Three randomized phase III trials have now conclusively proven that exposure to a PD-1 inhibitor prolongs survival in recurrent/metastatic (R/M) HNSCC, and it is clear that such agents should be used in the management of all patients who do not have contraindications to their use. Two of these phase III randomized trials showed that the anti-PD1 antibodies nivolumab and pembrolizumab were superior to investigators' choice chemotherapy in second-line platinum-refractory R/M HNSCC. Recently, a third phase III randomized trial, KEYNOTE-048, showed that pembrolizumab with chemotherapy was superior to the EXTREME regimen (cis- or carboplatin, 5-fluorouracil (5-FU) and cetuximab) in all patients, and pembrolizumab monotherapy was superior in patients whose tumors express PD-L1 in first-line R/M HNSCC. Pembrolizumab is now approved as monotherapy in PD-L1 expressing disease (combined positive score ≥1) or in combination with chemotherapy for all patients with R/M HNSCC. Thus, PD-L1 biomarker testing will be routinely used in R/M HNSCC, and this employs a scoring system that incorporates immune cell staining, referred to as the combined positive score (CPS). Additionally, for the 85% of patients with PD-L1 CPS ≥1, clinical judgment will guide the choice of pembrolizumab monotherapy or pembrolizumab plus chemotherapy, until more detailed clinical data are forthcoming to better inform this decision. In this article we discuss the clinical trials leading to these therapeutic advances and we will review initial results from clinical trials in previously untreated, locally advanced disease, and those using novel combinations of checkpoint inhibitors, co-stimulatory agonists, and therapeutic vaccines.
Collapse
Affiliation(s)
- John D Cramer
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol 2019; 16:669-683. [PMID: 31189965 DOI: 10.1038/s41571-019-0227-z] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Head and neck cancers are a heterogeneous collection of malignancies of the upper aerodigestive tract, salivary glands and thyroid. In this Review, we primarily focus on the changing therapeutic landscape of head and neck squamous cell carcinomas (HNSCCs) that can arise in the oral cavity, oropharynx, hypopharynx and larynx. We highlight developments in surgical and non-surgical therapies (mainly involving the combination of radiotherapy and chemotherapy), outlining how these treatments are being used in the current era of widespread testing for the presence of human papillomavirus infection in patients with HNSCC. Finally, we describe the clinical trials that led to the approval of the first immunotherapeutic agents for HNSCC, and discuss the development of strategies to decrease the toxicity of different treatment modalities.
Collapse
Affiliation(s)
- John D Cramer
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Yang X, Cheng H, Chen J, Wang R, Saleh A, Si H, Lee S, Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R, Fang J, Van Waes C, Chen Z. Head and Neck Cancers Promote an Inflammatory Transcriptome through Coactivation of Classic and Alternative NF-κB Pathways. Cancer Immunol Res 2019; 7:1760-1774. [PMID: 31624067 PMCID: PMC6941750 DOI: 10.1158/2326-6066.cir-18-0832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) promote inflammation in the tumor microenvironment through aberrant NF-κB activation, but the genomic alterations and pathway networks that modulate NF-κB signaling have not been fully dissected. Here, we analyzed genome and transcriptome alterations of 279 HNSCC specimens from The Cancer Genome Atlas (TCGA) cohort and identified 61 genes involved in NF-κB and inflammatory pathways. The top 30 altered genes were distributed across 96% of HNSCC samples, and their expression was often correlated with genomic copy-number alterations (CNA). Ten of the amplified genes were associated with human papilloma virus (HPV) status. We sequenced 15 HPV- and 11 HPV+ human HNSCC cell lines, and three oral mucosa keratinocyte lines, and supervised clustering revealed that 28 of 61 genes exhibit altered expression patterns concordant with HNSCC tissues and distinct signatures related to their HPV status. RNAi screening using an NF-κB reporter line identified 16 genes that are induced by TNFα or Lymphotoxin-β (LTβ) and implicated in the classic and/or alternative NF-κB pathways. Knockdown of TNFR, LTBR, or selected downstream signaling components established cross-talk between the classic and alternative NF-κB pathways. TNFα and LTβ induced differential gene expression involving the NF-κB, IFNγ, and STAT pathways, inflammatory cytokines, and metastasis-related genes. Improved survival was observed in HNSCC patients with elevated gene expression in T-cell activation, immune checkpoints, and IFNγ and STAT pathways. These gene signatures of NF-κB activation, which modulate inflammation and responses to the immune therapy, could serve as potential biomarkers in future clinical trials.
Collapse
Affiliation(s)
- Xinping Yang
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jianhong Chen
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ru Wang
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anthony Saleh
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Han Si
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Steven Lee
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Emine Guven-Maiorov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, College of Engineering, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Carter Van Waes
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Zhong Chen
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
16
|
Zeng Q, Yuan XY, Li W, Liu BW, Zhao X, Ren GJ, Wang Y, Dou J, Wang GY. Effects of tacrolimus (FK506) and mycophenolate mofetil (MMF) on regulatory T cells and co-inhibitory receptors in the peripheral blood of human liver allograft patients. Immunopharmacol Immunotoxicol 2019; 41:380-385. [PMID: 30633591 DOI: 10.1080/08923973.2018.1533026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qiang Zeng
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Ye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Li
- Experimental Center, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Wang Liu
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gui-Jun Ren
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gui-Ying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|