1
|
Han Z, Yang M, Bi L, Ye P, Liu Y, He P, Huang G, Jin H, Xia J. Quantitative imaging using [ 18F]F-TZ3108 to assess metabolic-associated fatty liver disease progression and low-carbohydrate diet efficacy. Nucl Med Biol 2025; 144-145:108997. [PMID: 39923314 DOI: 10.1016/j.nucmedbio.2025.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE The Sigma-1 receptor (Sig-1R), located in the mitochondrion-associated membranes (MAMs), is an important biomarker for endoplasmic reticulum (ER) stress and plays a crucial role in the advancement of metabolic-associated fatty liver disease (MAFLD). Despite its significance, current methods to monitor MAFLD progression and treatment response are limited. This study aims to address this gap by utilizing [18F]F-TZ3108, an effecient tracer targeting Sig-1R, to quantitatively assess MAFLD progression and the efficacy of a low-carbohydrate diet (LCD) as a potential therapeutic intervention. METHODS The C57 BL/6 J mice were fed either a high-fat diet (HFD) or regular diet (CTR) for 12 weeks, and the progression of MAFLD was continuously monitored at 0, 4, 8, 12 weeks via [18F]F-TZ3108 positron emission tomography/computed tomography (PET/CT) and ex vivo assessment. After confirming successful induction, LDC intervention was administered in the HFD group for 2 weeks. And relevant post-treatment evaluations were also performed. RESULTS PET/CT revealed a continuous decline in the hepatic binding potential (BPND) of [18F]F-TZ3108 in mice in the HFD group during the induction period, when compared with the BPND in the CTR group. This reduction was significant after the 4th week of induction (p < 0.05). Furthermore, following intervention with LCD, there was a significant improvement in BPND (LCD vs HFD, p = 0.001). CONCLUSIONS The results of this study demonstrate that LCD therapy effectively mitigates MAFLD progression. Furthermore, the use of PET imaging with [18F]F-TZ3108 provides a reliable, non-invasive method for monitoring the progression and treatment response of MAFLD, offering significant potential for early detection and personalized treatment evaluation.
Collapse
Affiliation(s)
- Zongping Han
- Department of Clinical Nutrition, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Pengyuan He
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Guolong Huang
- Xiamen University School of Public Health, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, Xiamen 361000, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Jinyu Xia
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
2
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
3
|
Tudor MS, Gheorman V, Simeanu GM, Dobrinescu A, Pădureanu V, Dinescu VC, Forțofoiu MC. Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis. Metabolites 2024; 14:198. [PMID: 38668326 PMCID: PMC11052048 DOI: 10.3390/metabo14040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The utilization of evolutive models and algorithms for predicting the evolution of hepatic steatosis holds immense potential benefits. These computational approaches enable the analysis of complex datasets, capturing temporal dynamics and providing personalized prognostic insights. By optimizing intervention planning and identifying critical transition points, they promise to revolutionize our approach to understanding and managing hepatic steatosis progression, ultimately leading to enhanced patient care and outcomes in clinical settings. This paradigm shift towards a more dynamic, personalized, and comprehensive approach to hepatic steatosis progression signifies a significant advancement in healthcare. The application of evolutive models and algorithms allows for a nuanced characterization of disease trajectories, facilitating tailored interventions and optimizing clinical decision-making. Furthermore, these computational tools offer a framework for integrating diverse data sources, creating a more holistic understanding of hepatic steatosis progression. In summary, the potential benefits encompass the ability to analyze complex datasets, capture temporal dynamics, provide personalized prognostic insights, optimize intervention planning, identify critical transition points, and integrate diverse data sources. The application of evolutive models and algorithms has the potential to revolutionize our understanding and management of hepatic steatosis, ultimately leading to improved patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Marinela Sînziana Tudor
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Veronica Gheorman
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Georgiana-Mihaela Simeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania; (M.S.T.); (G.-M.S.)
| | - Adrian Dobrinescu
- Department of Thoracic Surgery, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania
| | - Vlad Pădureanu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, Petru Rareș 2 Str, 200349 Craiova, Romania;
| | - Mircea-Cătălin Forțofoiu
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, Clinical Municipal Hospital “Philanthropy” of Craiova, 200143 Craiova, Romania;
| |
Collapse
|
4
|
Wibulpolprasert P, Subpinyo B, Chirnaksorn S, Shantavasinkul PC, Putadechakum S, Phongkitkarun S, Sritara C, Angkathunyakul N, Sumritpradit P. Correlation between magnetic resonance imaging proton density fat fraction (MRI-PDFF) and liver biopsy to assess hepatic steatosis in obesity. Sci Rep 2024; 14:6895. [PMID: 38519637 PMCID: PMC10960039 DOI: 10.1038/s41598-024-57324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Obesity is highly associated with Non-alcoholic fatty liver disease (NAFLD) and increased risk of liver cirrhosis and liver cancer-related death. We determined the diagnostic performance of the complex-based chemical shift technique MRI-PDFF for quantifying liver fat and its correlation with histopathologic findings in an obese population within 24 h before bariatric surgery. This was a prospective, cross-sectional, Institutional Review Board-approved study of PDFF-MRI of the liver and MRI-DIXON image volume before bariatric surgery. Liver tissues were obtained during bariatric surgery. The prevalence of NAFLD in the investigated cohort was as high as 94%. Histologic hepatic steatosis grades 0, 1, 2, and 3 were observed in 3 (6%), 25 (50%), 14 (28%), and 8 (16%) of 50 obese patients, respectively. The mean percentages of MRI-PDFF from the anterior and posterior right hepatic lobe and left lobe vs. isolate left hepatic lobe were 15.6% (standard deviation [SD], 9.28%) vs. 16.29% (SD, 9.25%). There was a strong correlation between the percentage of steatotic hepatocytes and MRI-PDFF in the left hepatic lobe (r = 0.82, p < 0.001) and the mean value (r = 0.78, p < 0.001). There was a strong correlation between MRI-derived subcutaneous adipose tissue volume and total body fat mass by dual-energy X-ray absorptiometry, especially at the L2-3 and L4 level (r = 0.85, p < 0.001). MRI-PDFF showed good performance in assessing hepatic steatosis and was an excellent noninvasive technique for monitoring hepatic steatosis in an obese population.
Collapse
Affiliation(s)
- Pornphan Wibulpolprasert
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | - Benya Subpinyo
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | | | | | | | - Sith Phongkitkarun
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | - Chanika Sritara
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | | | - Preeda Sumritpradit
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|