1
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Lorenz C, Frankenberger R. Novel Oronasal Drainage for Long COVID: Proposed Mechanisms-Case Report. Viruses 2025; 17:210. [PMID: 40006965 PMCID: PMC11861156 DOI: 10.3390/v17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Long COVID, potentially emerging post COVID-19 infection, involves extreme health challenges. Based on current literature in the field, we propose a novel approach to Long COVID treatment based on epipharyngeal abrasive therapy targeting ostia of the oral and nasal mucosa, having been identified for the first time. The presented case report documents the application of innovative oronasal drainage (OND), a novel treatment integrating physiological, biochemical, and fluid mechanical components simultaneously. OND led to remarkable improvements and even remissions of various symptoms, along with enhanced hand blood circulation. While the case suggests potential efficacy in Long COVID therapy, acknowledging inherent limitations is essential and its impact needs further validation through clinical trials.
Collapse
Affiliation(s)
- Claudia Lorenz
- Department of Operative Dentistry, Sanitätszentrum Pfreimd, Schloßbergstr. 1, 92536 Pfreimd, Germany;
| | - Roland Frankenberger
- Department of Operative Dentistry and Endodontics, Dental School, University of Marburg and University Medical Center Giessen and Marburg, 35039 Marburg, Germany
| |
Collapse
|
3
|
Camici M, Del Duca G, Brita AC, Antinori A. Connecting dots of long COVID-19 pathogenesis: a vagus nerve- hypothalamic-pituitary- adrenal-mitochondrial axis dysfunction. Front Cell Infect Microbiol 2024; 14:1501949. [PMID: 39735263 PMCID: PMC11671747 DOI: 10.3389/fcimb.2024.1501949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
The pathogenesis of long COVID (LC) still presents many areas of uncertainty. This leads to difficulties in finding an effective specific therapy. We hypothesize that the key to LC pathogenesis lies in the presence of chronic functional damage to the main anti-inflammatory mechanisms of our body: the three reflexes mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA) hormonal axis, and the mitochondrial redox status. We will illustrate that this neuro-endocrine-metabolic axis is closely interconnected and how the SARS-CoV-2 can damage it at all stages through direct, immune-inflammatory, epigenetic damage mechanisms, as well as through the reactivation of neurotropic viruses. According to our theory, the direct mitochondrial damage carried out by the virus, which replicates within these organelles, and the cellular oxidative imbalance, cannot be countered in patients who develop LC. This is because their anti-inflammatory mechanisms are inconsistent due to reduced vagal tone and direct damage to the endocrine glands of the HPA axis. We will illustrate how acetylcholine (ACh) and cortisol, with its cytoplasmatic and cellular receptors respectively, are fundamental players in the LC process. Both Ach and cortisol play multifaceted and synergistic roles in reducing inflammation. They achieve this by modulating the activity of innate and cell-mediated immunity, attenuating endothelial and platelet activation, and modulating mitochondrial function, which is crucial for cellular energy production and anti-inflammatory mechanisms. In our opinion, it is essential to study the sensitivity of the glucocorticoids receptor in people who develop LC and whether SARS-CoV-2 can cause long-term epigenetic variations in its expression and function.
Collapse
Affiliation(s)
- Marta Camici
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Del Duca
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Clelia Brita
- Department of Clinical Psychology, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
4
|
Akbar Z, Kunhipurayil HH, Saliba J, Ahmad J, Al-Mansoori L, Al-Khatib HA, Al Thani AA, Shi Z, Shaito AA. The Association between Lifestyle Factors and COVID-19: Findings from Qatar Biobank. Nutrients 2024; 16:1037. [PMID: 38613072 PMCID: PMC11013885 DOI: 10.3390/nu16071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 04/14/2024] Open
Abstract
Coronavirus Disease 2019 (COVID-19) manifestations range from mild to severe life-threatening symptoms, including death. COVID-19 susceptibility has been associated with various factors, but studies in Qatar are limited. The objective of this study was to investigate the correlation between COVID-19 susceptibility and various sociodemographic and lifestyle factors, including age, gender, body mass index, smoking status, education level, dietary patterns, supplement usage, physical activity, a history of bariatric surgery, diabetes, and hypertension. We utilized logistic regression to analyze these associations, using the data of 10,000 adult participants, aged from 18 to 79, from Qatar Biobank. In total, 10.5% (n = 1045) of the participants had COVID-19. Compared to non-smokers, current and ex-smokers had lower odds of having COVID-19 (odds ratio [OR] = 0.55; 95% CI: 0.44-0.68 and OR = 0.70; 95% CI: 0.57-0.86, respectively). Vitamin D supplement use was associated with an 18% reduction in the likelihood of contracting COVID-19 (OR = 0.82; 95% CI: 0.69-0.97). Obesity (BMI ≥ 30 kg/m2), a history of bariatric surgery, and higher adherence to the modern dietary pattern-characterized by the consumption of foods high in saturated fat and refined carbohydrates-were positively associated with COVID-19. Our findings indicate that adopting a healthy lifestyle may be helpful in the prevention of COVID-19 infection.
Collapse
Affiliation(s)
- Zoha Akbar
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 100, Lebanon
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut P.O. Box 90656, Lebanon
| | - Jamil Ahmad
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hebah A. Al-Khatib
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
| | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zumin Shi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abdullah A. Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Jeong K, Kim Y, Jeon J, Kim K. Subtyping of COVID-19 samples based on cell-cell interaction in single cell transcriptomes. Sci Rep 2023; 13:19629. [PMID: 37949890 PMCID: PMC10638268 DOI: 10.1038/s41598-023-46350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
In single-cell transcriptome analysis, numerous biomarkers related to COVID-19 severity, including cell subtypes, genes, and pathways, have been identified. Nevertheless, most studies have focused on severity groups based on clinical features, neglecting immunological heterogeneity within the same severity level. In this study, we employed sample-level clustering using cell-cell interaction scores to investigate patient heterogeneity and uncover novel subtypes. The clustering results were validated using external datasets, demonstrating superior reproducibility and purity compared to gene expression- or gene set enrichment-based clustering. Furthermore, the cell-cell interaction score-based clusters exhibited a strong correlation with the WHO ordinal severity score based on clinical characteristics. By characterizing the identified subtypes through known COVID-19 severity-associated biomarkers, we discovered a "Severe-like moderate" subtype. This subtype displayed clinical features akin to moderate cases; however, molecular features, such as gene expression and cell-cell interactions, resembled those of severe cases. Notably, all patients who progressed from moderate to severe belonged to this subtype, underscoring the significance of cell-cell interactions in COVID-19 patient heterogeneity and severity.
Collapse
Affiliation(s)
- Kyeonghun Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yooeun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaemin Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwangsoo Kim
- Department of Transdisciplinary Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
7
|
Rus CP, de Vries BEK, de Vries IEJ, Nutma I, Kooij JJS. Treatment of 95 post-Covid patients with SSRIs. Sci Rep 2023; 13:18599. [PMID: 37919310 PMCID: PMC10622561 DOI: 10.1038/s41598-023-45072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
After Covid-19 infection, 12.5% develops post-Covid-syndrome (PCS). Symptoms indicate numerous affected organ systems. After a year, chronic fatigue, dysautonomia and neurological and neuropsychiatric complaints predominate. In this study, 95 PCS patients were treated with selective serotonin reuptake inhibitors (SSRIs). This study used an exploratory questionnaire and found that two-thirds of patients had a reasonably good to strong response on SSRIs, over a quarter of patients had moderate response, while 10% reported no response. Overall, patients experienced substantial improved well-being. Brainfog and sensory overload decreased most, followed by chronic fatigue and dysautonomia. Outcomes were measured with three different measures that correlated strongly with each other. The response to SSRIs in PCS conditions was explained by seven possible neurobiological mechanisms based on recent literature on PCS integrated with already existing knowledge. Important for understanding these mechanisms is the underlying biochemical interaction between various neurotransmitter systems and parts of the immune system, and their dysregulation in PCS. The main link appears to be with the metabolic kynurenine pathway (KP) which interacts extensively with the immune system. The KP uses the same precursor as serotonin: tryptophan. The KP is overactive in PCS which maintains inflammation and which causes a lack of tryptophan. Finally, potential avenues for future research to advance this line of clinical research are discussed.
Collapse
Affiliation(s)
- Carla P Rus
- Independent Researcher, The Hague, The Netherlands.
| | | | - Ingmar E J de Vries
- Donders Institute, Radboud University, 6525 EN, Nijmegen, The Netherlands
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - J J Sandra Kooij
- Department of Psychiatry, Amsterdam UMC/VUMC, 1081 HJ, Amsterdam, The Netherlands
- PsyQ, 2593 HR, The Hague, The Netherlands
| |
Collapse
|
8
|
Steiner S, Fehrer A, Hoheisel F, Schoening S, Aschenbrenner A, Babel N, Bellmann-Strobl J, Finke C, Fluge Ø, Froehlich L, Goebel A, Grande B, Haas JP, Hohberger B, Jason LA, Komaroff AL, Lacerda E, Liebl M, Maier A, Mella O, Nacul L, Paul F, Prusty BK, Puta C, Riemekasten G, Ries W, Rowe PC, Sawitzki B, Shoenfeld Y, Schultze JL, Seifert M, Sepúlveda N, Sotzny F, Stein E, Stingl M, Ufer F, Veauthier C, Westermeier F, Wirth K, Wolfarth B, Zalewski P, Behrends U, Scheibenbogen C. Understanding, diagnosing, and treating Myalgic encephalomyelitis/chronic fatigue syndrome - State of the art: Report of the 2nd international meeting at the Charité Fatigue Center. Autoimmun Rev 2023; 22:103452. [PMID: 37742748 DOI: 10.1016/j.autrev.2023.103452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a devastating disease affecting millions of people worldwide. Due to the 2019 pandemic of coronavirus disease (COVID-19), we are facing a significant increase of ME/CFS prevalence. On May 11th to 12th, 2023, the second international ME/CFS conference of the Charité Fatigue Center was held in Berlin, Germany, focusing on pathomechanisms, diagnosis, and treatment. During the two-day conference, more than 100 researchers from various research fields met on-site and over 700 attendees participated online to discuss the state of the art and novel findings in this field. Key topics from the conference included: the role of the immune system, dysfunction of endothelial and autonomic nervous system, and viral reactivation. Furthermore, there were presentations on innovative diagnostic measures and assessments for this complex disease, cutting-edge treatment approaches, and clinical studies. Despite the increased public attention due to the COVID-19 pandemic, the subsequent rise of Long COVID-19 cases, and the rise of funding opportunities to unravel the pathomechanisms underlying ME/CFS, this severe disease remains highly underresearched. Future adequately funded research efforts are needed to further explore the disease etiology and to identify diagnostic markers and targeted therapies.
Collapse
Affiliation(s)
- Sophie Steiner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Annick Fehrer
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Friederike Hoheisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany.
| | | | - Anna Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nina Babel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Ruhr-University Bochum, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Laura Froehlich
- Center of Advanced Technology for Assisted Learning and Predictive Analytics (CATALPA), FernUniversität in Hagen, Germany
| | - Andreas Goebel
- Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - Johannes-Peter Haas
- Deutsches Zentrum für Kinder- und Jugendrheumatologie, Zentrum für Schmerztherapie junger Menschen, Garmisch-Partenkirchen, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonard A Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Anthony L Komaroff
- Division of General Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eliana Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Max Liebl
- Department of Physical Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Women's Health Research Institute, British Columbia Women's Hospital, Vancouver, BC, Canada; Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Friedemann Paul
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bhupesh K Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany; Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Wolfgang Ries
- Internal Medicine, Department of Nephrology, Diakonissenkrankenhaus, Flensburg, Germany
| | - Peter C Rowe
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health (BIH) & Charité University Medicine, Berlin, Germany
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University Herzelia, Israel
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE und Universität Bonn, Bonn, Germany
| | - Martina Seifert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Nuno Sepúlveda
- Department of Mathematics & Information Science, Warsaw University of Technology, Warsaw, Poland.; CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Elisa Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Michael Stingl
- Department of Neurology, Zentrum Votivpark, Vienna, Austria
| | - Friederike Ufer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Veauthier
- Interdisciplinary Center of Sleep Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH, Joanneum University of Applied Sciences, Graz, Austria; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Klaus Wirth
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Charité-Universitätsmedizin Berlin, Humboldt University of Berlin, Germany
| | - Pawel Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University Toruń, Toruń, Poland; Department of Experimental and Clinical Physiology, Warsaw Medical University, Stefana Banacha 2a, Warszawa 02-097, Poland
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany; German Center for Infection Research (DZIF), Berlin, Germany; AGV Research Unit Gene Vectors, Helmholtz Munich (HMGU), Munich, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
9
|
Scheibenbogen C, Bellmann-Strobl JT, Heindrich C, Wittke K, Stein E, Franke C, Prüss H, Preßler H, Machule ML, Audebert H, Finke C, Zimmermann HG, Sawitzki B, Meisel C, Toelle M, Krueger A, Aschenbrenner AC, Schultze JL, Beyer MD, Ralser M, Mülleder M, Sander LE, Konietschke F, Paul F, Stojanov S, Bruckert L, Hedderich DM, Knolle F, Riemekasten G, Vehreschild MJGT, Cornely OA, Behrends U, Burock S. Fighting Post-COVID and ME/CFS - development of curative therapies. Front Med (Lausanne) 2023; 10:1194754. [PMID: 37396922 PMCID: PMC10309204 DOI: 10.3389/fmed.2023.1194754] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
The sequela of COVID-19 include a broad spectrum of symptoms that fall under the umbrella term post-COVID-19 condition or syndrome (PCS). Immune dysregulation, autoimmunity, endothelial dysfunction, viral persistence, and viral reactivation have been identified as potential mechanisms. However, there is heterogeneity in expression of biomarkers, and it is unknown yet whether these distinguish different clinical subgroups of PCS. There is an overlap of symptoms and pathomechanisms of PCS with postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). No curative therapies are available for ME/CFS or PCS. The mechanisms identified so far provide targets for therapeutic interventions. To accelerate the development of therapies, we propose evaluating drugs targeting different mechanisms in clinical trial networks using harmonized diagnostic and outcome criteria and subgrouping patients based on a thorough clinical profiling including a comprehensive diagnostic and biomarker phenotyping.
Collapse
Affiliation(s)
- Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Judith Theresia Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cornelia Heindrich
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Elisa Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiana Franke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Berlin, Germany
| | - Hannah Preßler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Marie-Luise Machule
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Heinrich Audebert
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Immunomics, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Markus Toelle
- Department of Nephrology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Anne Krueger
- Department of Nephrology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Anna C. Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Mülleder
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silvia Stojanov
- Childrens’ Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Bruckert
- Clinical Trial Office, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver A. Cornely
- Department of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uta Behrends
- Childrens’ Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- AGV Research Unit Gene Vectors, Helmholtz Center Munich (HMGU), Munich, Germany
| | - Susen Burock
- Clinical Trial Office, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|