1
|
Wu Z, Famous M, Stoikidou T, Bowden FES, Dominic G, Huws SA, Godoy-Santos F, Oyama LB. Unravelling AMR dynamics in the rumenofaecobiome: Insights, challenges and implications for One Health. Int J Antimicrob Agents 2025; 66:107494. [PMID: 40120959 DOI: 10.1016/j.ijantimicag.2025.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global threat to human, animal and environmental health, exacerbated by horizontal gene transfer (HGT) via mobile genetic elements. This poses significant challenges that have a negative impact on the sustainability of the One Health approach, hindering its long-term viability and effectiveness in addressing the interconnectedness of global health. Recent studies on livestock animals, specifically ruminants, indicate that culturable ruminal bacteria harbour AMR genes with the potential for HGT. However, these studies have focused predominantly on using the faecobiome as a proxy to the rumen microbiome or using easily isolated and culturable bacteria, overlooking the unculturable population. These unculturable microbial groups could have a profound influence on the rumen resistome and AMR dynamics within livestock ecosystems, potentially holding critical insights for advanced understanding of AMR in One Health. In order to address this gap, this review of current research on the burden of AMR in livestock was undertaken, and it is proposed that combined study of the rumen microbiome and faecobiome, termed the 'rumenofaecobiome', should be performed to enhance understanding of the risks of AMR in ruminant livestock. This review discusses the complexities of the rumen microbiome and the risks of AMR transmission in this microbiome in a One Health context. AMR transmission dynamics and methodologies for assessing the risks of AMR in livestock are summarized, and future considerations for researching the impact of AMR in the rumen microbiome and the implications within the One Health framework are discussed.
Collapse
Affiliation(s)
- Ziming Wu
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| | - Mustasim Famous
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK; Department of Animal Science, Khulna Agricultural University, Khulna, Bangladesh
| | - Theano Stoikidou
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Freya E S Bowden
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Gama Dominic
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Sharon A Huws
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Fernanda Godoy-Santos
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Linda B Oyama
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
2
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
3
|
Tarrah A, Zhang D, Darvishzadeh P, LaPointe G. The Contribution of Dairy Bedding and Silage to the Dissemination of Genes Coding for Antimicrobial Resistance: A Narrative Review. Antibiotics (Basel) 2024; 13:905. [PMID: 39335078 PMCID: PMC11428397 DOI: 10.3390/antibiotics13090905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers. Several studies have highlighted the safety implications of AMR bacteria and genes in bedding and silage, emphasizing the need for further research on how housing, bedding, and silage management affect AMR in farm environments. Exposure to sub-lethal concentrations of antibiotics, such as those from contaminated bedding and silage, can prompt bacteria to develop resistance mechanisms. Thus, even if antimicrobial usage is diminished, ARGs may be maintained in the dairy farm environment. By implementing proactive measures to tackle AMR in dairy farming, we can take steps to preserve the health and productivity of dairy cattle while also protecting public health. This involves addressing the prudent use of antibiotics during production and promoting animal welfare, hygiene, and management practices in bedding and farm environments to minimize the risk of AMR development and spread. This narrative review compiles the growing research, positioning the contribution of bedding and silage to the prevalence and dissemination of AMR, which can elicit insights for researchers and policymakers.
Collapse
Affiliation(s)
- Armin Tarrah
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dong Zhang
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Pariya Darvishzadeh
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gisèle LaPointe
- Dairy at Guelph, Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Khan I, Bu R, Ali Z, Iqbal MS, Shi H, Ding L, Hong M. Metagenomics Analysis Reveals the Composition and Functional Differences of Fecal Microbiota in Wild, Farm, and Released Chinese Three-Keeled Pond Turtles ( Mauremys reevesii). Animals (Basel) 2024; 14:1750. [PMID: 38929370 PMCID: PMC11201187 DOI: 10.3390/ani14121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Rongping Bu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| | - Zeeshan Ali
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Muhammad Shahid Iqbal
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| |
Collapse
|
5
|
Liu S, Zheng N, Wang J, Zhao S. Relationships among bacterial cell size, diversity, and taxonomy in rumen. Front Microbiol 2024; 15:1376994. [PMID: 38628864 PMCID: PMC11018980 DOI: 10.3389/fmicb.2024.1376994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction The rumen microbial community plays a crucial role in the digestion and metabolic processes of ruminants. Although sequencing-based studies have helped reveal the diversity and functions of bacteria in the rumen, their physiological and biochemical characteristics, as well as their dynamic regulation along the digestion process in the rumen, remain poorly understood. Addressing these gaps requires pure culture studies to demystify the intricate mechanisms at play. Bacteria exhibit morphological differentiation associated with different species. Based on the difference in size or shape of microorganisms, size fractionation by filters with various pore sizes can be used to separate them. Methods In this study, we used polyvinylidene difluoride filters with pore sizes of 300, 120, 80, 40, 20, 8, 6, 2.1, and 0.6 μm. Bacterial suspensions were successively passed through these filters for the analysis of microbial population distribution using 16S rRNA gene sequences. Results We found that bacteria from the different pore sizes were clustered into four branches (> 120 μm, 40-120 μm, 6-20 μm, 20-40 μm, and < 0.6 μm), indicating that size fractionation had effects on enriching specific groups but could not effectively separate dominant groups by cell size alone. The species of unclassified Flavobacterium, unclassified Chryseobacterium, unclassified Delftia, Methylotenera mobilis, unclassified Caulobacteraceae, unclassified Oligella, unclassified Sphingomonas, unclassified Stenotrophomonas, unclassified Shuttleworthia, unclassified Sutterella, unclassified Alphaproteobacteria, and unclassified SR1 can be efficiently enriched or separated by size fractionation. Discussion In this study, we investigated the diversity of sorted bacteria populations in the rumen for preliminary investigations of the relationship between the size and classification of rumen bacteria that have the potential to improve our ability to isolate and culture bacteria from the rumen in the future.
Collapse
Affiliation(s)
- Sijia Liu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Malik PK, Trivedi S, Kolte AP, Mohapatra A, Biswas S, Bhattar AVK, Bhatta R, Rahman H. Comparative Rumen Metagenome and CAZyme Profiles in Cattle and Buffaloes: Implications for Methane Yield and Rumen Fermentation on a Common Diet. Microorganisms 2023; 12:47. [PMID: 38257874 PMCID: PMC10818812 DOI: 10.3390/microorganisms12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
A study was undertaken to compare the rumen microbial community composition, methane yield, rumen fermentation, and CAZyme profiles between cattle and buffaloes. The primary aim of this study was to ascertain the impact of the host species on the above when diet and environmental factors are fixed. A total of 43 phyla, 200 orders, 458 families, and 1722 microbial genera were identified in the study. Bacteroidetes was the most prominent bacterial phylum and constituted >1/3rd of the ruminal microbiota; however, their abundances were comparable between cattle and buffaloes. Firmicutes were the second most abundant bacteria, found to be negatively correlated with the Bacteroidetes. The abundances of Firmicutes as well as the F/B ratio were not different between the two host species. In this study, archaea affiliated with the nine phyla were identified, with Euryarchaeota being the most prominent. Like bacterial phyla, the abundances of Euryarchaeota methanogens were also similar between the cattle and buffaloes. At the order level, Methanobacteriales dominated the archaea. Methanogens from the Methanosarcinales, Methanococcales, Methanomicrobiales, and Methanomassiliicoccales groups were also identified, but at a lower frequency. Methanobrevibacter was the most prevalent genus of methanogens, accounting for approximately three percent of the rumen metagenome. However, their distribution was not different between the two host species. CAZymes affiliated with five classes, namely CBM, CE, GH, GT, and PL, were identified in the metagenome, where the GH class was the most abundant and constituted ~70% of the total CAZymes. The protozoal numbers, including Entodiniomorphs and Holotrichs, were also comparable between the cattle and buffaloes. Results from the study did not reveal any significant difference in feed intake, nutrient digestibility, and rumen fermentation between cattle and buffaloes fed on the same diet. As methane yield due to the similar diet composition, feed ingredients, rumen fermentation, and microbiota composition did not vary, these results indicate that the microbiota community structure and methane emissions are under the direct influence of the diet and environment, and the host species may play only a minor role until the productivity does not vary. More studies are warranted to investigate the effect of different diets and environments on microbiota composition and methane yield. Further, the impact of variable productivity on both the cattle and buffaloes when the diet and environmental factors are fixed needs to be ascertained.
Collapse
Affiliation(s)
- Pradeep K. Malik
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Shraddha Trivedi
- International Livestock Research Institute, South Asia Regional Office, New Delhi 110012, India
| | - Atul P. Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Archit Mohapatra
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Siddharth Biswas
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Ashwin V. K. Bhattar
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Habibar Rahman
- International Livestock Research Institute, South Asia Regional Office, New Delhi 110012, India
| |
Collapse
|
7
|
Malik PK, Trivedi S, Kolte AP, Mohapatra A, Biswas S, Bhattar AVK, Bhatta R, Rahman H. Comparative analysis of rumen metagenome, metatranscriptome, fermentation and methane yield in cattle and buffaloes fed on the same diet. Front Microbiol 2023; 14:1266025. [PMID: 38029196 PMCID: PMC10666647 DOI: 10.3389/fmicb.2023.1266025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
A study to compare the rumen microbial community composition, functional potential of the microbiota, methane (CH4) yield, and rumen fermentation was conducted in adult male cattle and buffaloes fed on the same diet. A total of 41 phyla, 169 orders, 374 families, and 1,376 microbial genera were identified in the study. Bacteroidetes and Firmicutes were the two most dominant bacterial phyla in both cattle and buffaloes. However, there was no difference in the abundance of Bacteroidetes and Firmicutes in the rumen metagenome of cattle and buffaloes. Based on the abundance, the Proteobacteria was the 3rd largest phylum in the metagenome, constituting 18-20% in both host species. Euryarchaeota was the most abundant phylum of the methanogens, whereas Methanobacteriales and Methanobrevibacter were the most abundant orders and genera in both species. The methanogen abundances were not different between the two host species. Like the metagenome, the difference between the compositional and functional abundances (metagenome vs. metatranscriptome) of the Bacteroidetes and Firmicutes was not significant, whereas the proteobacteria were functionally less active than their metagenomic composition. Contrary to the metagenome, the Euryarchaeota was the 3rd most functional phylum in the rumen and constituted ~15% of the metatranscriptome. Methanobacteriales were the most functional methanogens, accounting for more than 2/3rd of the total archaeal functionality. These results indicated that the methanogens from Euryarchaeota were functionally more active as compared to their compositional abundance. The CH4 yield (g/kg DMI), CH4 emission (g/kg DDM), dry matter (DM) intake, and rumen fermentation did not vary between the two host species. Overall, the study established a substantial difference between the compositional abundances and metabolic functionality of the rumen microbiota; however, feeding cattle and buffaloes on the same diet resulted in similar microbiota composition, metabolic functionality, and CH4 yield. Further studies are warranted to investigate the effect of different diets and environments on the composition and metabolic functionality of the rumen microbiota.
Collapse
Affiliation(s)
- Pradeep K. Malik
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Shraddha Trivedi
- International Livestock Research Institute, South Asia Regional Office, New Delhi, India
| | - Atul P. Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Archit Mohapatra
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Siddharth Biswas
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | | | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Habibar Rahman
- International Livestock Research Institute, South Asia Regional Office, New Delhi, India
| |
Collapse
|
8
|
Xiong Y, Wang X, Li X, Guo L, Yang F, Ni K. Exploring the rumen microbiota of Hu lambs in response to diet with paper mulberry. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12614-0. [PMID: 37306709 DOI: 10.1007/s00253-023-12614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Paper mulberry (Broussonetia papyrifera), as a new woody forage with high-protein characteristic, is being widely used in ruminant feeding. However, little is known about the comprehensive microbiota picture of whole ruminal niches (liquid, solid, and epithelium) under paper mulberry diet. To gain a better understanding of feeding paper mulberry on the rumen microbiota, the effects of fresh paper mulberry, paper mulberry silage, or a conventional high-protein alfalfa silage on rumen fermentation products and microbiota in rumen niches of Hu lambs were studied. Forty-five Hu lambs were randomly divided into 3 treatments with 15 replicates in each treatment. No significant difference was observed among treatments in the average daily gain (ADG). The fresh paper mulberry treatment had lower (P < 0.05) pH and higher (P < 0.05) total volatile fatty acids (TVFA) compared with silage treatments, but the fermentation parameters did not show significant differences between paper mulberry silage and alfalfa silage treatments. The Shannon index did not show a significant difference (P < 0.05) among treatments except between fresh paper mulberry and alfalfa silage treatment in rumen epithelial niches. Butyrivibrio and Treponema were the predominant genera in the rumen epithelial fraction, while Prevotella and Rikenellaceae_RC9 dominated in both rumen liquid and solid fractions. These results indicated the paper mulberry supplement did not have distinct impact on the microbial diversity and growth performance compared with alfalfa silage, especially for paper mulberry silage, which might help us develop an alternative animal feeding strategy of replacing alfalfa with paper mulberry. KEY POINTS: • Feeding paper mulberry silage did not show significant impact on the growth performance compared with alfalfa silage treatment. • Feeding fresh paper mulberry reduced rumen pH value and increased total volatile fatty acid. • The microbial diversity did not show significant difference among treatments.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linna Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- College of Animal Science, Guizhou University, Guiyang, 550525, China.
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Yu S, Li L, Zhao H, Liu M, Jiang L, Zhao Y. Citrus flavonoid extracts alter the profiling of rumen antibiotic resistance genes and virulence factors of dairy cows. Front Microbiol 2023; 14:1201262. [PMID: 37362928 PMCID: PMC10289158 DOI: 10.3389/fmicb.2023.1201262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Citrus flavonoid extracts (CFE) have the potential to reduce rumen inflammation, improve ruminal function, and enhance production performance in ruminants. Our previous studies have investigated the effects of CFE on the structure and function of rumen microbiota in dairy cows. However, it remains unclear whether CFE affects the prevalence of antibiotic resistance genes (ARG) and virulence factors genes (VFG) in the rumen. Therefore, metagenomics was used to identify the rumen ARG and VFG in lactating dairy cows fed with CFE diets. The results showed that CFE significantly reduced the levels of Multidrug and Antiphagocytosis in the rumen (p < 0.05) and increased the levels of Tetracycline, Iron uptake system, and Magnesium uptake system (p < 0.05). Furthermore, the changes were found to have associations with the phylum Lentisphaerae. It was concluded that CFE could be utilized as a natural plant product to regulate virulence factors and antibiotic resistance of rumen microbiota, thereby improving rumen homeostasis and the health of dairy cows.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, China
| |
Collapse
|
10
|
Abstract
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.
Collapse
Affiliation(s)
- Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Li LP, Peng KL, Xue MY, Zhu SL, Liu JX, Sun HZ. An Age Effect of Rumen Microbiome in Dairy Buffaloes Revealed by Metagenomics. Microorganisms 2022; 10:microorganisms10081491. [PMID: 35893549 PMCID: PMC9332492 DOI: 10.3390/microorganisms10081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Age is an important factor in shaping the gut microbiome. However, the age effect on the rumen microbial community for dairy buffaloes remains less explored. Using metagenomics, we examined the microbial composition and functions of rumen microbiota in dairy Murrah buffaloes of different ages: Y (1 year old), M (3−5 years old), E (6−8 years old), and O (>9 years old). We found that Bacteroidetes and Firmicutes were the predominant phyla, with Prevotella accounting for the highest abundance at the genus level. The proportion of Bacteroides and Methanobrevibacter significantly increased with age, while the abundance of genus Lactobacillus significantly decreased with age (LDA > 3, p < 0.05). Most differed COG and KEGG pathways were enriched in Y with carbohydrate metabolism, while older buffaloes enriched more functions of protein metabolism and the processing of replication and repair (LDA > 2, p < 0.05). Additionally, the functional contribution analysis revealed that the genera Prevotella and Lactobacillus of Y with more functions of CAZymes encoded genes of glycoside hydrolases and carbohydrate esterases for their roles of capable of metabolizing starch and sucrose-associated oligosaccharide enzyme, hemicellulase, and cellulase activities than the other three groups (LDA > 2, p < 0.05), thus affecting the 1-year-old dairy buffalo rumen carbohydrate metabolism. This study provides comprehensive dairy buffalo rumen metagenome data and assists in manipulating the rumen microbiome for improved dairy buffalo production.
Collapse
Affiliation(s)
- Long-Ping Li
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Ke-Lan Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Ming-Yuan Xue
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Sen-Lin Zhu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Jian-Xin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Hui-Zeng Sun
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Correspondence: ; Tel.: +86-0571-88981341
| |
Collapse
|
12
|
Li Y, Yang Y, Ma L, Liu J, An Q, Zhang C, Yin G, Cao Z, Pan H. Comparative Analyses of Antibiotic Resistance Genes in Jejunum Microbiota of Pigs in Different Areas. Front Cell Infect Microbiol 2022; 12:887428. [PMID: 35719330 PMCID: PMC9204423 DOI: 10.3389/fcimb.2022.887428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants that threaten human and animal health. Intestinal microbiota may be an important ARGs repository, and intensive animal farming is a likely contributor to the environmental burden of ARGs. Using metagenomic sequencing, we investigated the structure, function, and drug resistance of the jejunal microbial community in Landrace (LA, Kunming), Saba (SB, Kunming), Dahe (DH, Qujing), and Diannan small-ear piglets (DS, Xishuangbanna) from different areas in Yunnan Province, China. Remarkable differences in jejunal microbial diversity among the different pig breeds, while the microbial composition of pig breeds in close areas tends to be similar. Functional analysis showed that there were abundant metabolic pathways and carbohydrate enzymes in all samples. In total, 32,487 ARGs were detected in all samples, which showed resistance to 38 categories of drugs. The abundance of ARGs in jejunum was not significantly different between LA and SB from the same area, but significantly different between DS, DH and LA or SB from different areas. Therefore, the abundance of ARGs was little affected by pig breeds and microorganism community structure, but it was closely related to geographical location. In addition, as a probiotic, Lactobacillus amylovorus is also an important ARGs producing bacterium. Our results revealed the antibiotic exposure and intestinal microbial resistance of farms in the study areas, which could provide basic knowledge and potential strategies for rational use of antibiotics and reducing the risk of ARGs transmission in animal husbandry.
Collapse
Affiliation(s)
- Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- Institiute of Animal husbandry, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Gefen Yin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Liu S, Moon CD, Zheng N, Huws S, Zhao S, Wang J. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. MICROBIOME 2022; 10:76. [PMID: 35546409 PMCID: PMC9097414 DOI: 10.1186/s40168-022-01272-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/10/2022] [Indexed: 05/12/2023]
Abstract
Although there is now an extensive understanding of the diversity of microbial life on earth through culture-independent metagenomic DNA sequence analyses, the isolation and cultivation of microbes remains critical to directly study them and confirm their metabolic and physiological functions, and their ecological roles. The majority of environmental microbes are as yet uncultured however; therefore, bringing these rare or poorly characterized groups into culture is a priority to further understand microbiome functions. Moreover, cultivated isolates may find utility in a range of applications, such as new probiotics, biocontrol agents, and agents for industrial processes. The growing abundance of metagenomic and meta-transcriptomic sequence information from a wide range of environments provides more opportunities to guide the isolation and cultivation of microbes of interest. In this paper, we discuss a range of successful methodologies and applications that have underpinned recent metagenome-guided isolation and cultivation of microbe efforts. These approaches include determining specific culture conditions to enrich for taxa of interest, to more complex strategies that specifically target the capture of microbial species through antibody engineering and genome editing strategies. With the greater degree of genomic information now available from uncultivated members, such as via metagenome-assembled genomes, the theoretical understanding of their cultivation requirements will enable greater possibilities to capture these and ultimately gain a more comprehensive understanding of the microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Christina D Moon
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Sharon Huws
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast, UK
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
14
|
Kumar CA, Kumar DS, Raja Kishore K, Venkata Seshaiah C, Narendranath D, Reddy PR. De-oiled palm kernel cake for stall-fed buffaloes: effect on milk constituents, nutrient digestibility, biochemical parameters, and rumen fermentation. Trop Anim Health Prod 2022; 54:184. [PMID: 35536280 DOI: 10.1007/s11250-022-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Palm kernel cake, the main by-product of the palm kernel oil extraction process, is a highly available and low-priced agro-industrial by-product. However, several concerns exist to arriving at a safe inclusion level, especially for buffaloes. Two experiments were conducted to evaluate the effects of feeding de-oiled palm kernel cake (DPKC) to tropical buffaloes. In trial I, four fistulated Murrah buffaloes arranged in a 4 × 4 Latin square design were fed diets containing DPKC inclusions at 0, 15, 30, and 45% levels of compound feed to study their effects on rumen fermentation parameters. Trial II involves feeding twelve lactating buffaloes with DPKC inclusion levels at 0 or 15% of the compound feed to evaluate the effect of DPKC on the nutrient digestibility, serum biochemical constituents, rumen fermentation patterns, and lactation profile. The DPKC diets did not affect rumen pH, TCA-ppt nitrogen, and TVFA proportion; nevertheless, the NH3-N data revealed a decreased trend (P = 0.076). The acetate fraction decreased linearly (P < 0.05) with increased DPKC diets. Replacing the conventional protein sources with DPKC at a 15% level did not influence the nutrient intake and digestibility coefficients. No significant effects were observed for serum biochemical and mineral profiles of the lactating buffaloes fed the DPKC diet. Neither milk yield nor milk constituents (SNF, total solids, density, lactose, protein) were altered with the diets fed, except for milk fat%, which tended to increase (P = 0.092) on feeding DPKC diets. All the lactation parameters varied with time of collection, and diet × time interactions were noticed for fat, density, protein, 6% FCM yield, and butterfat yield. The feed efficiency tended to increase (P = 0.070) in the buffaloes fed DPKC diets. The profit margins were ₹6.07 and ₹1.63 for the DPKC included diets and feed cost per Kg 6% FCMY, respectively. In conclusion, the inclusion of DPKC in the diet decreases feed cost without affecting the nutrient intakes, digestibility coefficients, serum biochemical and mineral profile, and lactation parameters.
Collapse
Affiliation(s)
- C Anil Kumar
- Department of Livestock Farm Complex, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram, Andhra Pradesh, India.
| | - D Srinivas Kumar
- Department of Animal Nutrition, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - K Raja Kishore
- Department of Animal Nutrition, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - Ch Venkata Seshaiah
- Department of Livestock Farm Complex, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram, Andhra Pradesh, India
| | - D Narendranath
- Department of Poultry Science, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - P Ravikanth Reddy
- Animal Husbandry Department, Veterinary Dispensary, Taticherla, Andhra Pradesh, India
| |
Collapse
|
15
|
López-Catalina A, Atxaerandio R, García-Rodríguez A, Goiri I, Gutierrez-Rivas M, Jiménez-Montero JA, González-Recio O. Characterisation of the rumen resistome in Spanish dairy cattle. Anim Microbiome 2021; 3:63. [PMID: 34551823 PMCID: PMC8456196 DOI: 10.1186/s42523-021-00125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rumen microorganisms carry antimicrobial resistance genes which pose a threaten to animals and humans in a One Health context. In order to tackle the emergence of antimicrobial resistance it is vital to understand how they appear, their relationship with the host, how they behave as a whole in the ruminal ecosystem or how they spread to the environment or humans. We sequenced ruminal samples from 416 Holstein dairy cows in 14 Spanish farms using nanopore technology, to uncover the presence of resistance genes and their potential effect on human, animal and environmental health. RESULTS We found 998 antimicrobial resistance genes (ARGs) in the cow rumen and studied the 25 most prevalent genes in the 14 dairy cattle farms. The most abundant ARGs were related to the use of antibiotics to treat mastitis, metritis and lameness, the most common diseases in dairy cattle. The relative abundance (RA) of bacteriophages was positively correlated to the ARGs RA. The heritability of the RA of the more abundant ARGs ranged between 0.10 (mupA) and 0.49 (tetW), similar to the heritability of the RA of microbes that carried those ARGs. Even though these genes are carried by the microorganisms, the host is partially controlling their RA by having a more suitable rumen pH, folds, or other physiological traits that promote the growth of those microorganisms. CONCLUSIONS We were able to determine the most prevalent ARGs (macB, msbA, parY, rpoB2, tetQ and TaeA) in the ruminal bacteria ecosystem. The rumen is a reservoir of ARGs, and strategies to reduce the ARG load from livestock must be pursued.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Raquel Atxaerandio
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Aser García-Rodríguez
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Idoia Goiri
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Mónica Gutierrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain.
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|