1
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
2
|
Sardaru MC, Marangoci NL, Palumbo R, Roviello GN, Rotaru A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023; 28:3561. [PMID: 37110795 PMCID: PMC10141977 DOI: 10.3390/molecules28083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Narcisa-Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alexandru Rotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Institute for Research, Innovation and Technology Transfer, UPS “Ion Creanga”, Ion Creanga Str. 1, MD2069 Chisinau, Moldova
| |
Collapse
|
3
|
Muraru S, Muraru S, Nitu FR, Ionita M. Recent Efforts and Milestones for Simulating Nucleic Acid FRET Experiments through Computational Methods. J Chem Inf Model 2022; 62:232-239. [PMID: 35014791 DOI: 10.1021/acs.jcim.1c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational methods can greatly aid nucleic acid fluorescence experiments by either offering fully detailed atomic insights into the conformations and interactions present in the studied system or by providing accurate simulations of the fundamental parameters. Fluorescence-based optical biosensors show great potential for clinical diagnosis of life-altering diseases with a very high specificity. Many of the designs for such rely on the concept of Förster resonance energy transfer (FRET). Currently, the methods used experimentally make use of theoretical assumptions which fundamentally affect the results. Having a detailed atomistic overview or significant simulated parameters could improve the understanding of the calculations and provide much more accurate outcomes. However, there are many challenges that need to be addressed before standardized computational protocols can be employed. This review is meant to highlight the progress made for computational methods used to simulate FRET experiments for nucleic acid probes. Recent advances have been made in computational tools, such as force field parametrizations and improved protocols. Complementary simulations to experimental data are also comprised in the this review.
Collapse
Affiliation(s)
- Sorin Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Sebastian Muraru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Florentin Romeo Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania.,Advanced Polymer Materials Group, University Polithenica of Bucharest, Gh. Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
4
|
Harhala M, Gembara K, Miernikiewicz P, Owczarek B, Kaźmierczak Z, Majewska J, Nelson DC, Dąbrowska K. DNA Dye Sytox Green in Detection of Bacteriolytic Activity: High Speed, Precision and Sensitivity Demonstrated With Endolysins. Front Microbiol 2021; 12:752282. [PMID: 34759903 PMCID: PMC8575126 DOI: 10.3389/fmicb.2021.752282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Increasing number of deaths from multi-drug resistant bacterial infections has caused both the World Health Organization and the Centers for Disease Control and Prevention to repeatedly call for development of new, non-traditional antibacterial treatments. Antimicrobial enzymes, including those derived from bacteriophages, known as endolysins or enzybiotics, are considered promising solutions among the emerging therapies. These naturally occurring proteins specifically destroy bacterial cell walls (peptidoglycan) and as such, are capable of killing several logs of bacteria within minutes. Some endolysins cause lysis of a wide range of susceptible bacteria, including both Gram-positive and Gram-negative organisms, whereas other endolysins are species- or even strain-specific. To make wide use of endolysins as antibacterial agents, some basic research issues remain to be clarified or addressed. Currently available methods for testing endolysin kinetics are indirect, require large numbers of bacteria, long incubation times and are affected by technical problems or limited reproducibility. Also, available methods are focused more on enzymatic activity rather than killing efficiency which is more relevant from a medical perspective. Results: We show a novel application of a DNA dye, SYTOX Green. It can be applied in comprehensive, real-time and rapid measurement of killing efficiency, lytic activity, and susceptibility of a bacterial population to lytic enzymes. Use of DNA dyes shows improved reaction times, higher sensitivity in low concentrations of bacteria, and independence of bacterial growth. Our data show high precision in lytic activity and enzyme efficiency measurements. This solution opens the way to the development of new, high throughput, precise measurements and tests in variety of conditions, thus unlocking new possibilities in development of novel antimicrobials and analysis of bacterial samples.
Collapse
Affiliation(s)
- Marek Harhala
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Katarzyna Gembara
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Paulina Miernikiewicz
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Joanna Majewska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
5
|
Tabara K, Watanabe K, Shigeto H, Yamamura S, Kishi T, Kitamatsu M, Ohtsuki T. Fluorophore-PNA-Quencher/Quencher-DNA probe for miRNA detection. Bioorg Med Chem Lett 2021; 51:128359. [PMID: 34534675 DOI: 10.1016/j.bmcl.2021.128359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Micro RNAs (miRNAs) are involved in a variety of biological functions and are attracting attention as diagnostic and prognostic markers for various diseases. Highly sensitive RNA detection methods are required to determine miRNA expression levels and intracellular localization. In this study, we designed new double-stranded peptide nucleic acid (PNA)/DNA probes consisting of a fluorophore-PNA-quencher (fPq) and a quencher-DNA (qD) for miR-221 detection. We optimized the fPq structure, PNA-DNA hybrid length, and hybrid position. The resultant fPq-2/qD-6b probe was a 6-bp hybrid probe with a 10-base fPq and a 6-base qD. The signal-to-background ratios of the probes showed that fPq-2/qD-6b had a higher target sensitivity than fPq (PNA beacon)-type and fP/qD-type probes. The results of the detection limit and target specificity indicate that the fPq/qD probe is promising for RNA detection in both cells and cell extracts as well as for miRNA diagnosis.
Collapse
Affiliation(s)
- Kentaro Tabara
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hajime Shigeto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Takamasa Kishi
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
6
|
Albani JR. Fluorescence Characterization of Standard, Mutant and Sweet Corn. J Fluoresc 2020; 30:1261-1270. [PMID: 32767190 DOI: 10.1007/s10895-020-02601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
This work resulted in the development of a method based on fluorescence spectroscopy to differentiate between three corn varieties, standard, mutant and sweet, and to characterize the corn variety present in finished products. This was achieved by recording fluorescence emission spectra as a function of excitation wavelength. For a standard, non-transgenic and non-sweet corn, the maximum of the first peak is around 412-414 nm at the excitation wavelength equal to 280 nm and shifts to the longer emission wavelengths as the excitation wavelength increases. Also, the second peak is located at 535 nm or is slightly higher (537 to 540 nm) and does not vary for excitation wavelengths from 280 to 360 nm. For mutant corn, the position of the first peak is located at 420 nm and above for λex = 280 nm, while the second peak starts at 525-530 nm (depending on the mutant) and never reaches 535 nm. Finally, for a sweet corn, the position of the first fluorescence emission peak is around 430 nm. If the sweet corn is non-hybrid, the position of the second emission peak is at 535 nm. A hybrid sweet corn has its second peak around 530 nm. Thus, fluorescence emission at 530 is characteristic of corn that has undergone natural or artificial genetic transformation. Finally, we found simple mathematical equations to calculate the percentage of amylopectin and amylose in a given corn.
Collapse
Affiliation(s)
- Jihad René Albani
- Laboratoire de Biophysique Moléculaire, Université de Lille, Bâtiment C6, Campus Cité Scientifique, 59655, Villeneuve d'Ascq Cédex, France.
| |
Collapse
|