1
|
Lee M, Jeong D, Yoon K, Jin J, Back YW, Jang IT, Kim HJ, Kim BJ, Bae SM. Inactivated mycobacterium paragordonae delivered via microneedle patches as a novel tuberculosis booster vaccine. Hum Vaccin Immunother 2025; 21:2507473. [PMID: 40405740 PMCID: PMC12118391 DOI: 10.1080/21645515.2025.2507473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge with approximately 8.2 million new cases reported in 2023, despite the century-old Bacillus Calmette-Guérin (BCG) vaccine. BCG's protective efficacy diminishes over time, especially against pulmonary TB in adults. This study evaluates ethanol-inactivated Mycobacterium paragordonae (M.pg) delivered via Microneedle Array Patches (MAPs) as a novel booster strategy to enhance BCG vaccination efficacy. Various inactivation methods including heat treatment, formalin, and ethanol were compared, with ethanol-inactivated M.pg selected for optimal preservation of morphology and immunologically significant proteins. MAPs were fabricated using the droplet extension technique (DEN). Immunological assessment was conducted in a mouse model receiving either BCG alone or BCG followed by one or two administrations of inactivated M.pg MAP. Protective efficacy was evaluated through M. tuberculosis H37Rv challenge. Ethanol inactivation uniquely preserved morphology and maintained protein integrity, particularly Ag85B. Two administrations of inactivated M.pg following BCG priming significantly enhanced protective immune responses compared to BCG alone, inducing strong Th1-polarized immunity characterized by elevated IFN-γ, TNF-α, and IL-2 production in both CD4+ and CD8+ T cells. This vaccination strategy effectively generated effector memory T cells in lung and spleen, contributing to significant reduction in bacterial burden following challenge, with the BCG+Inactivated M.pg2nd group demonstrating the greatest reduction. Inactivated M.pg delivered via microneedle patches represents an effective booster strategy for enhancing BCG-induced protection against tuberculosis, with a two-dose schedule demonstrating optimal efficacy. This approach combines the safety advantages of an inactivated vaccine with the practical benefits of MAPs, addressing key limitations of tuberculosis vaccination strategies.
Collapse
Affiliation(s)
- Moonsu Lee
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Kiyoung Yoon
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Juyoung Jin
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Yong Woo Back
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - In-Taek Jang
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Min Bae
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| |
Collapse
|
2
|
Emmerick LS, Schwarz MGA, Corrêa PR, Piñero SL, Gomes LHF, Almeida AMM, Valente RH, Degrave WMS, Mendonça-Lima L. Characterization of mycobacteria isolated from the Brazilian Atlantic Forest: a public health and bioprospection perspective. Front Microbiol 2025; 16:1558006. [PMID: 40351310 PMCID: PMC12062998 DOI: 10.3389/fmicb.2025.1558006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The Mycobacterium genus remains highly relevant today due to the rising incidence of tuberculosis and opportunistic infections caused by environmental mycobacteria. While much is known about M. tuberculosis, M. leprae and M. bovis, studies focusing on environmental mycobacteria remain limited. These microorganisms are globally distributed and have been identified in diverse biomes, including the Atlantic Forest. This study aims to provide a characterization of four mycobacterial strains isolated from the Atlantic Forest, assessing their metabolic capabilities and biotechnological potential. We investigated the presence of cellulases and proteases and conducted an initial profiling of secreted proteins. Furthermore, the examination of shared antigens and infection kinetics within macrophages offered insights into the ecological and pathogenic potential of these isolates. From a public health perspective, antigenic similarities between these environmental microorganisms and the BCG vaccine strain may influence the efficacy of BCG in protecting against diseases such as tuberculosis. Continued research on these and other environmental isolates, particularly within Brazil's highly biodiverse ecosystems, holds promise for advancing scientific knowledge and contributing to human health.
Collapse
Affiliation(s)
- Leandro Santiago Emmerick
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sindy Licette Piñero
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Alta Complexidade, Unidade de Pesquisa Clínica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Maria Mazotto Almeida
- Laboratório de Biocatálise Microbiana, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Nassuuna J, Sterk J, Walusimbi B, Natukunda A, Nkangi R, Amongin R, Zirimenya L, Webb EL, Elliott AM, Nkurunungi G. Helminth driven gut inflammation and microbial translocation associate with altered vaccine responses in rural Uganda. NPJ Vaccines 2025; 10:56. [PMID: 40140378 PMCID: PMC11947158 DOI: 10.1038/s41541-025-01116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Vaccine responses are sometimes impaired in rural, low-income settings. Helminth-associated gut barrier dysfunction and microbial translocation (MT) may be implicated. We used samples from a trial of praziquantel treatment-effects on vaccine responses in Schistosoma mansoni (Sm)-endemic Ugandan islands, measuring intestinal fatty acid-binding protein 2 (I-FABP2), lipopolysaccharide-binding protein, anti-endotoxin core antibodies (EndoCab), soluble CD14 (sCD14) in plasma, and faecal lipocalin-2, occult blood (FOB), and calprotectin (fCAL), and evaluating their associations with baseline helminth infection, praziquantel treatment, and responses to BCG, yellow fever, typhoid, HPV, and tetanus-diphtheria vaccines. Sm associated positively with fCAL and FOB, hookworm with I-FABP2, and any helminth with EndoCab IgM, fCAL and FOB. Sm associated inversely with sCD14. Praziquantel treatment reduced all marker concentrations, significantly fCAL and FOB, implying that Sm-associated gut inflammation and MT is reversible. Associations of assessed markers with vaccine-specific responses were predominantly inverse. Interventions to improve gut barrier function may enhance vaccine responsiveness.
Collapse
Affiliation(s)
- Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | - Bridgious Walusimbi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ronald Nkangi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Amongin
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily L Webb
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Ghasemi F, Kardan-Yamchi J, Heidary M, Karami-Zarandi M, Akrami S, Maleki A, Khoshnood S, Kazemian H. Effects of non-tuberculous mycobacteria on BCG vaccine efficacy: A narrative review. J Clin Tuberc Other Mycobact Dis 2024; 36:100451. [PMID: 38764556 PMCID: PMC11101679 DOI: 10.1016/j.jctube.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
The Mycobacterium tuberculosis bacterial pathogen is responsible for the ongoing global tuberculosis (TB) epidemic. Bacille Calmette-Guérin (BCG), the only currently approved TB vaccine, is successful in preventing disseminated disease in newborns. However, it has a variable efficacy against pulmonary TB in adults. This protective effect of the vaccine varies greatly among different populations and geographical areas, which the increased exposure of particular populations to non-tuberculous mycobacteria (NTM) is considered as one of the reasons for this issue. Numerous studies have shown that exposure to NTM species causes the host immune system to be improperly primed. It has also been suggested that NTM species may be blamed for reduction in BCG vaccine effectiveness against M. tuberculosis. The increased exposure of certain populations to NTM has diverse effects on BCG efficacy. Moreover, the exposure to NTM can induce opposite effects on BCG efficacy depending on the NTM exposure route and survivability. A detailed understanding of the impact of NTM exposure on the efficacy of the BCG vaccine is essential for ongoing efforts to develop new TB vaccines as it may ultimately be a crucial success factor. The aim of this study was to review the findings of the studies focusing on the effects of NTM on BCG vaccine efficacy in animal models.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Kardan-Yamchi
- Quality Control and Screening Management Office, Deputy of Technical and New Technologies, Iranian Blood Transfusion Organization, Tehran, Iran
| | - Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Morteza Karami-Zarandi
- Department of Microbiology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Arredondo-Hernández R, Schcolnik-Cabrera A, Orduña P, Juárez-López D, Varela-Salinas T, López-Vidal Y. Identification of peptides presented through the MHC-II of dendritic cells stimulated with Mycobacterium avium. Immunobiology 2023; 228:152416. [PMID: 37429053 DOI: 10.1016/j.imbio.2023.152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Mycobacterium avium (M. avium) represents a species of concern, because of its ability to modulate the host's innate immune response, and therefore influence trajectory of adaptative immunity. Since eradicative response against mycobacteria, and M. tuberculosis/M. avium, relies on peptides actively presented on a Major Histocompatibility complex-II (MHC-II) context, we assessed paradoxical stimulation of Dendritic Cell resulting on immature immunophenotype characterized by membrane minor increase of MHC-II and CD40 despite of high expression of the pro-inflammatory tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in supernatants. Identification of M. avium leucine rich peptides forming short α-helices shutting down Type 1T helper (Th1), contribute to the understanding of immune evasion of an increasingly prevalent pathogen, and may provide a basis for future immunotherapy to infectious and non-infectious disease.
Collapse
Affiliation(s)
- René Arredondo-Hernández
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - Tania Varela-Salinas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Lee MH, Seo H, Lee MS, Kim BJ, Kim HL, Lee DH, Oh J, Shin JY, Jin JY, Jeong DH, Kim BJ. Protection against tuberculosis achieved by dissolving microneedle patches loaded with live Mycobacterium paragordonae in a BCG prime-boost strategy. Front Immunol 2023; 14:1178688. [PMID: 37398665 PMCID: PMC10312308 DOI: 10.3389/fimmu.2023.1178688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
INTRODUCTION Skin vaccination using dissolving microneedle patch (MNP) technology for transdermal delivery is a promising vaccine delivery strategy to overcome the limitations of the existing vaccine administration strategies using syringes. To improve the traditional microneedle mold fabrication technique, we introduced droplet extension (DEN) to reduce drug loss. Tuberculosis remains a major public health problem worldwide, and BCG revaccination had failed to increase the protective efficacy against tuberculosis. We developed an MNP with live Mycobacterium paragordonae (Mpg) (Mpg-MNP) as a candidate of tuberculosis booster vaccine in a heterologous prime-boost strategy to increase the BCG vaccine efficacy. MATERIALS AND METHODS The MNPs were fabricated by the DEN method on a polyvinyl alcohol mask film and hydrocolloid-adhesive sheet with microneedles composed of a mixture of mycobacteria and hyaluronic acid. We assessed the transdermal delivery efficiency by comparing the activation of the dermal immune system with that of subcutaneous injection. A BCG prime Mpg-MNP boost regimen was administered to a mouse model to evaluate the protective efficacy against M. tuberculosis. RESULTS We demonstrated the successful transdermal delivery achieved by Mpg-MNP compared with that observed with BCG-MNP or subcutaneous vaccination via an increased abundance of MHCII-expressing Langerin+ cells within the dermis that could migrate into draining lymph nodes to induce T-cell activation. In a BCG prime-boost regimen, Mpg-MNP was more protective than BCG-only immunization or BCG-MNP boost, resulting in a lower bacterial burden in the lungs of mice infected with virulent M. tuberculosis. Mpg-MNP-boosted mice showed higher serum levels of IgG than BCG-MNP-boosted mice. Furthermore, Ag85B-specific T-cells were activated after BCG priming and Mpg-MNP boost, indicating increased production of Th1-related cytokines in response to M. tuberculosis challenge, which is correlated with enhanced protective efficacy. DISCUSSION The MNP fabricated by the DEN method maintained the viability of Mpg and achieved effective release in the dermis. Our data demonstrate a potential application of Mpg-MNP as a booster vaccine to enhance the efficacy of BCG vaccination against M. tuberculosis. This study produced the first MNP loaded with nontuberculous mycobacteria (NTM) to be used as a heterologous booster vaccine with verified protective efficacy against M. tuberculosis.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Moon-Su Lee
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Byoung Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye Lin Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Du Hyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Yeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Ju Young Jin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Do Hyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Dwivedi V, Gautam S, Beamer G, Stromberg PC, Headley CA, Turner J. IL-10 Modulation Increases Pyrazinamide's Antimycobacterial Efficacy against Mycobacterium tuberculosis Infection in Mice. Immunohorizons 2023; 7:412-420. [PMID: 37279084 PMCID: PMC10580111 DOI: 10.4049/immunohorizons.2200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
Mechanisms to shorten the duration of tuberculosis (TB) treatment include new drug formulations or schedules and the development of host-directed therapies (HDTs) that better enable the host immune system to eliminate Mycobacterium tuberculosis. Previous studies have shown that pyrazinamide, a first-line antibiotic, can also modulate immune function, making it an attractive target for combinatorial HDT/antibiotic therapy, with the goal to accelerate clearance of M. tuberculosis. In this study, we assessed the value of anti-IL-10R1 as an HDT along with pyrazinamide and show that short-term anti-IL-10R1 blockade during pyrazinamide treatment enhanced the antimycobacterial efficacy of pyrazinamide, resulting in faster clearance of M. tuberculosis in mice. Furthermore, 45 d of pyrazinamide treatment in a functionally IL-10-deficient environment resulted in sterilizing clearance of M. tuberculosis. Our data suggest that short-term IL-10 blockade with standard TB drugs has the potential to improve clinical outcome by reducing the treatment duration.
Collapse
Affiliation(s)
- Varun Dwivedi
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Shalini Gautam
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Gillian Beamer
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State Institute, Columbus, OH
| | - Colwyn A. Headley
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
9
|
Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, Ali MZ, Patterson J, Creissen E, Rampacci E, Cooper SK, Podell BK, Gonzalez-Juarrero M, Obregon-Henao A, Henao-Tamayo M. Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Rep 2022; 41:111783. [PMID: 36516760 DOI: 10.1016/j.celrep.2022.111783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Rhythm Dadhwal
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Malik Zohaib Ali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Johnathan Patterson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Dwivedi V, Gautam S, Headley CA, Piergallini T, Torrelles JB, Turner J. IL-10 Receptor Blockade Delivered Simultaneously with Bacillus Calmette-Guérin Vaccination Sustains Long-Term Protection against Mycobacterium tuberculosis Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1406-1416. [PMID: 35181640 PMCID: PMC11075079 DOI: 10.4049/jimmunol.2100900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization still remains the best vaccination strategy available to control the development of active tuberculosis. Protection afforded by BCG vaccination gradually wanes over time and although booster strategies have promise, they remain under development. An alternative approach is to improve BCG efficacy through host-directed therapy. Building upon prior knowledge that blockade of IL-10R1 during early Mycobacterium tuberculosis infection improves and extends control of M. tuberculosis infection in mice, we employed a combined anti-IL-10R1/BCG vaccine strategy. An s.c. single vaccination of BCG/anti-IL10-R1 increased the numbers of CD4+ and CD8+ central memory T cells and reduced Th1 and Th17 cytokine levels in the lung for up to 7 wk postvaccination. Subsequent M. tuberculosis challenge in mice showed both an early (4 wk) and sustained long-term (47 wk) control of infection, which was associated with increased survival. In contrast, protection of BCG/saline-vaccinated mice waned 8 wk after M. tuberculosis infection. Our findings demonstrate that a single and simultaneous vaccination with BCG/anti-IL10-R1 sustains long-term protection, identifying a promising approach to enhance and extend the current BCG-mediated protection against TB.
Collapse
Affiliation(s)
- Varun Dwivedi
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Shalini Gautam
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Colwyn A Headley
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Tucker Piergallini
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| |
Collapse
|
11
|
COVID-19 and Beyond: Exploring Public Health Benefits from Non-Specific Effects of BCG Vaccination. Microorganisms 2021; 9:microorganisms9102120. [PMID: 34683441 PMCID: PMC8539044 DOI: 10.3390/microorganisms9102120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
Bacille Calmette–Guérin (BCG) vaccination, widely used throughout the world to protect against infant tuberculous meningitis and miliary tuberculosis (TB), can provide broad non-specific protection against infectious respiratory diseases in certain groups. Interest in BCG has seen a resurgence within the scientific community as the mechanisms for non-specific protection have begun to be elucidated. The impact of the COVID-19 pandemic on nearly every aspect of society has profoundly illustrated the pressure that respiratory infections can place on a national healthcare system, further renewing interest in BCG vaccination as a public health policy to reduce the burden of those illnesses. However, the United States does not recommend BCG vaccination due to its variable effectiveness against adult TB, the relatively low risk of Mycobacterium tuberculosis infection in most of the United States, and the vaccine’s interference with tuberculin skin test reactivity that complicates TB screening. In this review, we explore the broad immune training effects of BCG vaccination and literature on the effects of BCG vaccination on COVID-19 spread, disease severity, and mortality. We further discuss barriers to scheduled BCG vaccination in the United States and how those barriers could potentially be overcome.
Collapse
|
12
|
Nkurunungi G, Zirimenya L, Nassuuna J, Natukunda A, Kabuubi PN, Niwagaba E, Oduru G, Kabami G, Amongin R, Mutebe A, Namutebi M, Zziwa C, Amongi S, Ninsiima C, Onen C, Akello F, Sewankambo M, Kiwanuka S, Kizindo R, Kaweesa J, Cose S, Webb E, Elliott AM. Effect of intensive treatment for schistosomiasis on immune responses to vaccines among rural Ugandan island adolescents: randomised controlled trial protocol A for the ' POPulation differences in VACcine responses' (POPVAC) programme. BMJ Open 2021; 11:e040426. [PMID: 33593768 PMCID: PMC7888376 DOI: 10.1136/bmjopen-2020-040426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Several licensed and investigational vaccines have lower efficacy, and induce impaired immune responses, in low-income versus high-income countries and in rural, versus urban, settings. Understanding these population differences is essential to optimising vaccine effectiveness in the tropics. We suggest that repeated exposure to and immunomodulation by chronic helminth infections partly explains population differences in vaccine response. METHODS AND ANALYSIS We have designed an individually randomised, parallel group trial of intensive versus standard praziquantel (PZQ) intervention against schistosomiasis, to determine effects on vaccine response outcomes among school-going adolescents (9-17 years) from rural Schistosoma mansoni-endemic Ugandan islands. Vaccines to be studied comprise BCG on day 'zero'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. The intensive arm will receive PZQ doses three times, each 2 weeks apart, before BCG immunisation, followed by a dose at week 8 and quarterly thereafter. The standard arm will receive PZQ at week 8 and 52. We expect to enrol 480 participants, with 80% infected with S. mansoni at the outset.Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine the effects of intensive anthelminthic treatment on correlates of protective immunity, on waning of vaccine response, on priming versus boosting immunisations and on S. mansoni infection status and intensity. Exploratory immunology assays using archived samples will enable assessment of mechanistic links between helminths and vaccine responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant ethics committes of Uganda and UK. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER ISRCTN60517191.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Prossy N Kabuubi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Emmanuel Niwagaba
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Grace Kabami
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Rebecca Amongin
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Alex Mutebe
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Milly Namutebi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Susan Amongi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Caroline Onen
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Sewankambo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Samuel Kiwanuka
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - James Kaweesa
- Vector Control Division, Republic of Uganda Ministry of Health, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
13
|
Natukunda A, Nkurunungi G, Zirimenya L, Nassuuna J, Oduru G, Amongin R, Kabuubi PN, Mutebe A, Onen C, Amongi S, Nakazibwe E, Akello F, Kiwanuka S, Kiwudhu F, Sewankambo M, Nsubuga D, Kizindo R, Staedke SG, Cose S, Webb E, Elliott AM. Effect of intermittent preventive treatment for malaria with dihydroartemisinin-piperaquine on immune responses to vaccines among rural Ugandan adolescents: randomised controlled trial protocol B for the ' POPulation differences in VACcine responses' (POPVAC) programme. BMJ Open 2021; 11:e040427. [PMID: 33593769 PMCID: PMC7893608 DOI: 10.1136/bmjopen-2020-040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Drivers of lower vaccine efficacy and impaired vaccine-specific immune responses in low-income versus high-income countries, and in rural compared with urban settings, are not fully elucidated. Repeated exposure to and immunomodulation by parasite infections may be important. We focus on Plasmodium falciparum malaria, aiming to determine whether there are reversible effects of malaria infection on vaccine responses. METHODS AND ANALYSIS We have designed a randomised, double-blind, placebo-controlled, parallel group trial of intermittent preventive malaria treatment versus placebo, to determine effects on vaccine response outcomes among school-going adolescents (9 to 17 years) from malaria-endemic rural areas of Jinja district (Uganda). Vaccines to be studied comprise BCG vaccine on day 'zero'; yellow fever, oral typhoid and human papilloma virus vaccines at week 4; and tetanus/diphtheria booster vaccine at week 28. Participants in the intermittent preventive malaria treatment arm will receive dihydroartemisinin/piperaquine (DP) dosed by weight, 1 month apart, prior to the first immunisation, followed by monthly treatment thereafter. We expect to enrol 640 adolescents. Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. In secondary analyses, we will determine effects of monthly DP treatment (versus placebo) on correlates of protective immunity, on vaccine response waning, on whether there are differential effects on priming versus boosting immunisations, and on malaria infection prevalence. We will also conduct exploratory immunology assays among subsets of participants to further characterise effects of the intervention on vaccine responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER Current Controlled Trials identifier: ISRCTN62041885.
Collapse
Affiliation(s)
- Agnes Natukunda
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Rebecca Amongin
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Prossy N Kabuubi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Alex Mutebe
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Caroline Onen
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Susan Amongi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Esther Nakazibwe
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Samuel Kiwanuka
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Fred Kiwudhu
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Sewankambo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Denis Nsubuga
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Wait LF, Dobson AP, Graham AL. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 2020; 38:5582-5590. [DOI: 10.1016/j.vaccine.2020.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
|
15
|
Shah JA, Lindestam Arlehamn CS, Horne DJ, Sette A, Hawn TR. Nontuberculous Mycobacteria and Heterologous Immunity to Tuberculosis. J Infect Dis 2020; 220:1091-1098. [PMID: 31165861 DOI: 10.1093/infdis/jiz285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Development of an improved tuberculosis (TB) vaccine is a high worldwide public health priority. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, provides variable efficacy against adult pulmonary TB, but why this protection varies is unclear. Humans are regularly exposed to non-tuberculous mycobacteria (NTM) that live in soil and water reservoirs and vary in different geographic regions around the world. Immunologic cross-reactivity may explain disparate outcomes of BCG vaccination and susceptibility to TB disease. Evidence supporting this hypothesis is increasing but challenging to obtain due to a lack of reliable research tools. In this review, we describe the progress and bottlenecks in research on NTM epidemiology, immunology and heterologous immunity to Mtb. With ongoing efforts to develop new vaccines for TB, understanding the effect of NTM on vaccine efficacy may be a critical determinant of success.
Collapse
Affiliation(s)
- Javeed A Shah
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - David J Horne
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, California.,University of California San Diego, La Jolla
| | - Thomas R Hawn
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
16
|
Kabagenyi J, Natukunda A, Nassuuna J, Sanya RE, Nampijja M, Webb EL, Elliott AM, Nkurunungi G. Urban-rural differences in immune responses to mycobacterial and tetanus vaccine antigens in a tropical setting: A role for helminths? Parasitol Int 2020; 78:102132. [PMID: 32387542 PMCID: PMC7397513 DOI: 10.1016/j.parint.2020.102132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/31/2023]
Abstract
Several vaccines elicit lower efficacy or impaired immune responses in rural compared to urban settings, and in tropical low-income countries compared to high-income countries. An unresolved hypothesis is that immunomodulation by parasitic infections such as helminths (prevalent in rural tropical settings) contributes to suppression of vaccine responses. Among 1–17-year-old Ugandan residents of rural Schistosoma mansoni (Sm)-endemic islands and proximate urban communities with lower helminth exposure, we assessed plasma antibody and whole blood assay cytokine responses to tetanus toxoid (TT) and purified protein derivative of Mycobacterium tuberculosis (PPD). These were taken to represent recall responses to tetanus and BCG vaccination in infancy. PPD-specific responses are additionally induced by tuberculous and non-tuberculous mycobacterial exposure. Urban-rural comparisons showed that PPD-specific IFN-γ and IL-13 and TT-specific IL-13 and IgG concentrations were lower in the rural setting, but that PPD-specific IgE concentrations were higher. Among rural participants, Sm infection was inversely associated with PPD-specific IFN-γ, while nematode infection was positively associated with PPD-specific IgG. Among urban participants, Sm infection was positively associated with PPD-specific responses but inversely associated with TT-specific responses, while nematode infection was inversely associated with TT-specific IgG and IgG4, but no associations were observed with PPD-specific responses. Despite these associations, for the urban-rural comparisons there were no notable changes in test statistics after adjusting for current helminth infections, suggesting that helminths were not the sole explanation for the urban-rural differences observed. Helminths likely work in concert with other environmental exposures and operational factors to influence vaccine response. Vaccine (BCG, tetanus)-specific immune responses differ by urban/rural setting. Associations between helminths and vaccine-specific response also differ by setting. Urban-rural differences are not fully explained by helminth infection prevalence. Helminths likely work in concert with other factors to influence vaccine response.
Collapse
Affiliation(s)
- Joyce Kabagenyi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Richard E Sanya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
| |
Collapse
|
17
|
Moliva JI, Hossfeld AP, Canan CH, Dwivedi V, Wewers MD, Beamer G, Turner J, Torrelles JB. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8 + T-cell-dependent manner. Mucosal Immunol 2018; 11:968-978. [PMID: 28930287 PMCID: PMC5860920 DOI: 10.1038/mi.2017.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
Abstract
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8+ T cells, and CD8+ T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8+ T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.
Collapse
Affiliation(s)
- Juan I. Moliva
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, COM, OSU, Columbus, OH, USA
| | - Austin P. Hossfeld
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Cynthia H. Canan
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Varun Dwivedi
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Mark D. Wewers
- Dept. Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, COM, OSU, Columbus, OH, USA
| | - Gillian Beamer
- Dept. Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Joanne Turner
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| | - Jordi B. Torrelles
- Dept. Microbial Infection and Immunity, College of Medicine (COM), The Ohio State University (OSU), Columbus, Ohio, USA
| |
Collapse
|
18
|
Dockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front Immunol 2017; 8:1134. [PMID: 28955344 PMCID: PMC5601272 DOI: 10.3389/fimmu.2017.01134] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
A number of new tuberculosis (TB) vaccines have been or are entering clinical trials, which include genetically modified mycobacteria, mycobacterial antigens delivered by viral vectors, or mycobacterial antigens in adjuvant. Some of these vaccines aim to replace the existing BCG vaccine but others will be given as a boosting vaccine following BCG vaccination given soon after birth. It is clear that the existing BCG vaccines provide incomplete and variable protection against pulmonary TB. This review will discuss what we have learnt over the last 20 years about how the BCG vaccine induces specific and non-specific immunity, what factors influence the immune responses induced by BCG, and progress toward identifying correlates of immunity against TB from BCG vaccination studies. There is still a lot to learn about the BCG vaccine and the insights gained can help the development of more protective vaccines.
Collapse
Affiliation(s)
- Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
19
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Jenkins AO, Michel A, Rutten V. Original Mycobacterial Sin, a consequence of highly homologous antigens? Vet Microbiol 2017; 203:286-293. [PMID: 28619159 DOI: 10.1016/j.vetmic.2017.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
The role of antigens shared between Mycobacteria in in-vivo cross-reactive immune responses in host animals, have been reported to be responsible for reduced BCG vaccination efficacy as well reduced specificity of routine immunological diagnostic tests. This presents with significant disease control challenges in humans and animals. The present review highlights the results of previous studies on the effect of pre-sensitization to environmental mycobacteria on either pathogenic mycobacteria and/or M. bovis BCG, in experimental animals. It also takes an in-depth view into assessing the genetic similarities and relationships between atypical mycobacteria and Mycobacterium tuberculosis complex (MTBC) and how they might explain the immunological imprint of environmental mycobacteria in directing the hosts' immune response upon subsequent exposure to other classes of mycobacteria. The outcome of this review suggests that genetic closeness between particular atypical mycobacteria and MTBC usually indicate a higher level of homology for certain shared protective antigens. This ultimately results in a higher level of cross reactive immune responses as compared with other atypical mycobacteria that are further away genetically. This would explain the different effects of environmental mycobacteria on MTBC that have been reported in the different studies. In other words the direction of the host immune system in response to exposure to MTBC would depend on the type of environmental mycobacteria that was encountered in the initial exposure. We also explain these mycobacterial interactions in the context of the phenomenon of "Original Mycobacterial Sin". The effects of these inevitable mycobacterial interactions on field diagnosis and control by vaccination and how to circumvent them are discussed.
Collapse
Affiliation(s)
- A O Jenkins
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - A Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - V Rutten
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
21
|
King HC, Khera-Butler T, James P, Oakley BB, Erenso G, Aseffa A, Knight R, Wellington EM, Courtenay O. Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLoS One 2017; 12:e0173811. [PMID: 28333945 PMCID: PMC5363844 DOI: 10.1371/journal.pone.0173811] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 12/31/2022] Open
Abstract
The Mycobacterium genus comprises over one-hundred-and-fifty recognised species, the majority of which reside in the environment and many of which can be pathogenic to mammals. Some species of environmental mycobacteria may interfere with BCG vaccination efficacy and in tuberculin test interpretation. Examining biogeographic trends in the distribution of members of the mycobacteria across a number of physicochemical and spatial gradients in soil and water environments across Ethiopia using oligotyping identified differential distributions of pathogenic and significant species. The tuberculosis complex was identified in more than 90% of water samples and taxonomic groups implicated in lower BCG vaccine efficiency were core in both soil and water Mycobacterium communities. A reservoir of Mycobacterium bovis was identified in water, with up to 7.3×102 genome equivalents per ml. Elevation, temperature, habitat and vegetation type were important predictors of both soil and water Mycobacterium communities. These results represent the first step in understanding the potential risk of exposure to environmental mycobacteria that may undermine efforts to reduce disease incidence.
Collapse
Affiliation(s)
- Hayley C. King
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Tanya Khera-Butler
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Phillip James
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Girume Erenso
- St. Paul’s Hospital Millennium Medical College, Department of Microbiology, Immunology and Parasitology, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute (AHRI), ALERT Campus, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), ALERT Campus, Addis Ababa, Ethiopia
| | - Rob Knight
- Department of Pediatrics and Department of Computer Science, University of California, San Diego, California, United States of America
| | | | - Orin Courtenay
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Oral Tolerance to Environmental Mycobacteria Interferes with Intradermal, but Not Pulmonary, Immunization against Tuberculosis. PLoS Pathog 2016; 12:e1005614. [PMID: 27153120 PMCID: PMC4859477 DOI: 10.1371/journal.ppat.1005614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB) and is administered in over 150 countries worldwide. Despite its widespread use, the vaccine has a variable protective efficacy of 0-80%, with the lowest efficacy rates in tropical regions where TB is most prevalent. This variability is partially due to ubiquitous environmental mycobacteria (EM) found in soil and water sources, with high EM prevalence coinciding with areas of poor vaccine efficacy. In an effort to elucidate the mechanisms underlying EM interference with BCG vaccine efficacy, we exposed mice chronically to Mycobacterium avium (M. avium), a specific EM, by two different routes, the oral and intradermal route, to mimic human exposure. After intradermal BCG immunization in mice exposed to oral M. avium, we saw a significant decrease in the pro-inflammatory cytokine IFN-γ, and an increase in T regulatory cells and the immunosuppressive cytokine IL-10 compared to naïve BCG-vaccinated animals. To circumvent the immunosuppressive effect of oral M. avium exposure, we vaccinated mice by the pulmonary route with BCG. Inhaled BCG immunization rescued IFN-γ levels and increased CD4 and CD8 T cell recruitment into airways in M. avium-presensitized mice. In contrast, intradermal BCG vaccination was ineffective at T cell recruitment into the airway. Pulmonary BCG vaccination proved protective against Mtb infection regardless of previous oral M. avium exposure, compared to intradermal BCG immunization. In conclusion, our data indicate that vaccination against TB by the pulmonary route increases BCG vaccine efficacy by avoiding the immunosuppressive interference generated by chronic oral exposure to EM. This has implications in TB-burdened countries where drug resistance is on the rise and health care options are limited due to economic considerations. A successful vaccine against TB is necessary in these areas as it is both effective and economical.
Collapse
|
23
|
Cruz-Aguilar M, Castillo-Rodal AI, Schcolnik-Cabrera A, Bonifaz LC, Molina G, López-Vidal Y. TLR4 and DC-SIGN receptors recognized Mycobacterium scrofulaceum promoting semi-activated phenotype on bone marrow dendritic cells. Tuberculosis (Edinb) 2016; 99:31-40. [PMID: 27450002 DOI: 10.1016/j.tube.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 01/25/2023]
Abstract
Nontuberculous mycobacteria (NTM) are recognized as emerging pathogens and their immune regulatory mechanisms are not well described yet. From them, Mycobacterium avium is known to be a weak activator of dendritic cells (DCs) that impairs the response induced by BCG vaccine. However, whether other NTM such as Mycobacterium scrofulaceum may modulate the activation of DCs, has not been extensively studied. Here, we exposed bone marrow-derived DCs (BMDCs) to M. scrofulaceum and we analyzed the effect on the activation of DCs. We found that M. scrofulaceum has a comparable ability to induce a semi-mature DC phenotype, which was produced by its interaction with DC-SIGN and TLR4 receptors in a synergic effect. BMDCs exposed to M. scrofulaceum showed high expression of PD-L2 and production of IL-10, as well as low levels of co-stimulatory molecules and pro-inflammatory cytokines. In addition to immunophenotype induced on DCs, changes in morphology, re-organization of cytoskeleton and decreased migratory capacity are consistent with a semi-mature phenotype. However, unlike other pathogenic mycobacteria, the DC-semi-mature phenotype induced by M. scrofulaceum was reversed after re-exposure to BCG, suggesting that modulation mechanisms of DC-activation used by M. scrofulaceum are different to other known pathogenic mycobacteria. This is the first report about the immunophenotypic characterization of DC stimulated by M. scrofulaceum.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Instituto Mexicano del Seguro Social, México, DF, Mexico.
| | - Gabriela Molina
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| |
Collapse
|
24
|
Gu D, Chen W, Mi Y, Gong X, Luo T, Bao L. The Mycobacterium bovis BCG prime-Rv0577 DNA boost vaccination induces a durable Th1 immune response in mice. Acta Biochim Biophys Sin (Shanghai) 2016; 48:385-90. [PMID: 26922320 DOI: 10.1093/abbs/gmw010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis remains a major global health problem and effective vaccines are urgently needed. In this study, we used the combined DNA- and protein-based vaccines of immunodominant antigen Rv0577 to boost BCG and evaluated their immunogenicity in BALB/c mice. Our data suggest that the booster vaccine may substantially enhance the immunogenicity of BCG and strengthen both CD4+ T cell-mediated Th1 and CD8+ T cell-mediated cytolytic responses. Compared with the protein-based vaccine, the DNA-based vaccine can induce more durable Th1 immune response, characterized by high levels of antibody response, proliferation response, percentages of CD4+/CD8+ and cytokine secretion in antigen-stimulated splenocyte cultures. In conclusion, we for the first time, developed a protein- and plasmid DNA-based booster vaccine based on Rv0577. Our findings suggest that antigen Rv0577-based DNA vaccine is immunogenic and can efficiently boost BCG, which could be helpful in the design of an efficient vaccination strategy against TB.
Collapse
Affiliation(s)
- Dongqing Gu
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Youjun Mi
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Xueli Gong
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| | - Lang Bao
- Laboratory of Infection and Immunity, School of Basic Medical Sciences, West China Center of Medical Science, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Thirunavukkarasu S, de Silva K, Begg DJ, Whittington RJ, Plain KM. Macrophage polarization in cattle experimentally exposed to Mycobacterium avium subsp. paratuberculosis. Pathog Dis 2015; 73:ftv085. [PMID: 26454271 PMCID: PMC4626599 DOI: 10.1093/femspd/ftv085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease (JD) in cattle, has significant impacts on the livestock industry and has been implicated in the etiology of Crohn's disease. Macrophages play a key role in JD pathogenesis, which is driven by the manipulation of host immune mechanisms by MAP. A change in the macrophage microenvironment due to pathogenic or host-derived stimuli can lead to classical (M1) or alternative (M2) polarization of macrophages. In addition, prior exposure to antigenic stimuli has been reported to alter the response of macrophages to subsequent stimuli. However, macrophage polarization in response to MAP exposure and its possible implications have not been previously addressed. In this study, we have comprehensively examined monocyte/macrophage polarization and responsiveness to antigens from MAP-exposed and unexposed animals. At 3 years post-exposure, there was a heterogeneous macrophage activation pattern characterized by both classical and alternate phenotypes. Moreover, subsequent exposure of macrophages from MAP-exposed cattle to antigens from MAP and other mycobacterial species led to significant variation in the production of nitric oxide, interleukin-10 and tumour necrosis factor α. These results indicate the previously unreported possibility of changes in the activation state and responsiveness of circulating monocytes/macrophages from MAP-exposed cattle.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Kumudika de Silva
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Douglas J Begg
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Richard J Whittington
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Karren M Plain
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
26
|
Korioth-Schmitz B, Perley CC, Sixsmith JD, Click EM, Lee S, Letvin NL, Frothingham R. Rhesus immune responses to SIV Gag expressed by recombinant BCG vectors are independent from pre-existing mycobacterial immunity. Vaccine 2015; 33:5715-5722. [PMID: 26192357 DOI: 10.1016/j.vaccine.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND A recombinant Mycobacterium bovis BCG (rBCG) vector expressing HIV transgenes is an attractive candidate as a dual vaccine against HIV and TB. However, pre-existing immune responses to mycobacteria may influence immune responses to rBCG. We analyzed data from a rhesus rBCG trial to determine the effect of pre-existing mycobacterial immune responses on the vaccine-induced responses to the vector and expressed transgene. METHODS Indian-origin rhesus macaques were primed with rBCG expressing simian immunodeficiency virus (SIV) Gag and boosted with attenuated vaccinia NYVAC gag-pol. Mycobacteria responses were measured by Mycobacterium tuberculosis (Mtb) purified protein derivative (PPD) interferon-γ ELISpot and Mtb whole cell lysate (WCL) ELISA. SIV Gag responses were measured by SIV Gag ELISpot and by p11C tetramer binding. RESULTS Baseline Mtb PPD ELISpot responses and Mtb WCL antibody responses in rhesus macaques overlapped those in human populations. Cellular and antibody responses boosted sharply 4 weeks after rBCG vaccination. Mtb WCL antibody titers at 4 weeks correlated with baseline titers. Primates vaccinated with rBCG developed strong SIV Gag ELISpot and p11C tetramer responses after rBCG prime and NYVAC boost. There were no correlations between the pre-existing mycobacterial immune responses and the SIV Gag T cell responses after vaccination. CONCLUSIONS Rhesus immune responses to SIV Gag expressed by rBCG vectors were independent from pre-existing anti-mycobacterial immunity. Rhesus macaques may serve as a surrogate for investigations of pre-existing anti-mycobacterial immunity in humans.
Collapse
Affiliation(s)
- Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Casey C Perley
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Jaimie D Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Eva M Click
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Sunhee Lee
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Norman L Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
27
|
Kim KH, Kim TS, Lee JG, Park JK, Yang M, Kim JM, Jo EK, Yuk JM. Characterization of Proinflammatory Responses and Innate Signaling Activation in Macrophages Infected with Mycobacterium scrofulaceum. Immune Netw 2014; 14:307-20. [PMID: 25550697 PMCID: PMC4275388 DOI: 10.4110/in.2014.14.6.307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium scrofulaceum is an environmental and slow-growing atypical mycobacterium. Emerging evidence suggests that M. scrofulaceum infection is associated with cervical lymphadenitis in children and pulmonary or systemic infections in immunocompromised adults. However, the nature of host innate immune responses to M. scrofulaceum remains unclear. In this study, we examined the innate immune responses in murine bone marrow-derived macrophages (BMDMs) infected with different M. scrofulaceum strains including ATCC type strains and two clinically isolated strains (rough and smooth types). All three strains resulted in the production of proinflammatory cytokines in BMDMs mediated through toll-like receptor-2 and the adaptor MyD88. Activation of MAPKs (extracellular signal-regulated kinase 1/2, and p38, and c-Jun N-terminal kinase) and nuclear receptor (NF)-κB together with intracellular reactive oxygen species generation were required for the expression of proinflammatory cytokines in BMDMs. In addition, the rough morphotypes of M. scrofulaceum clinical strains induced higher levels of proinflammatory cytokines, MAPK and NF-κB activation, and ROS production than other strains. When mice were infected with different M. scrofulaceum strains, those infected with the rough strain showed the greatest hepatosplenomegaly, granulomatous lesions, and immune cell infiltration in the lungs. Notably, the bacterial load was higher in mice infected with rough colonies than in mice infected with ATCC or smooth strains. Collectively, these data indicate that rough M. scrofulaceum induces higher inflammatory responses and virulence than ATCC or smooth strains.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center of Inflammation, Infection & Immunity, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Tae-Sung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Joy G Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Miso Yang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jin-Man Kim
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Department of Pathology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| |
Collapse
|
28
|
Dockrell HM. Real vaccines in the real world: tuberculosis vaccines move south. Expert Rev Vaccines 2014; 7:703-7. [DOI: 10.1586/14760584.7.6.703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Poyntz HC, Stylianou E, Griffiths KL, Marsay L, Checkley AM, McShane H. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:226-37. [PMID: 24572168 PMCID: PMC4066954 DOI: 10.1016/j.tube.2013.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/30/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis (TB) is highly variable between populations. One possible explanation for this variability is increased exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were evaluated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms underlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were associated with reduced protection. These findings demonstrate that exposure to NTM can induce opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates.
Collapse
Affiliation(s)
- Hazel C Poyntz
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Elena Stylianou
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Kristin L Griffiths
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Leanne Marsay
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Anna M Checkley
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
30
|
Yang D, Liu B, Hou X, Jiao D, Li X, Wen L, Zhu P, Fu N. Pre-treatment with Mycobacterium avium-derived lipids reduces the macrophage response to interferon γ in BCG-vaccinated mice. J Med Microbiol 2013; 62:980-987. [PMID: 23579397 DOI: 10.1099/jmm.0.056283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the current vaccine used against Mycobacterium tuberculosis (MTB) infection. However, exposure to environmental pathogens, such as Mycobacterium avium, interferes with the immune response induced by BCG vaccination. How M. avium affects the efficiency of BCG is unclear. In this study, BCG-vaccinated mice pre-treated with M. avium-derived lipids (MALs) showed a higher mycobacterial load and increased infiltration of inflammatory cells compared to control mice treated with Escherichia coli-derived lipids (ELs). Unexpectedly, there were no changes in cell proliferation or IFN-γ levels in spleen cells stimulated with protein purified derivatives (PPD) or heat-inactivated BCG in MALs-treated mice. However, pre-treatment with MALs decreased the bactericidal effect as well as the production of TNF-α and nitric oxide (NO) in murine macrophages from BCG-vaccinated mice stimulated with IFN-γ. These results suggest that MAL pre-treatment dampens the immune response against MTB and that this dampening is associated with a decreased response to IFN-γ stimulation in murine macrophages. T-lymphocyte responses, however, were unaffected.
Collapse
Affiliation(s)
- Daqing Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Beiyi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoriu Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Delong Jiao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueli Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyan Wen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Fu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS One 2012; 7:e39909. [PMID: 22768165 PMCID: PMC3386939 DOI: 10.1371/journal.pone.0039909] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The current vaccine against tuberculosis (TB), BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS In the present study we show that the fusion protein HyVac4 (H4), consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb). Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.
Collapse
|
32
|
Assessment of the immune responses induced in cattle after inoculation of a Mycobacterium bovis strain deleted in two mce2 genes. J Biomed Biotechnol 2012; 2012:258353. [PMID: 22719207 PMCID: PMC3374952 DOI: 10.1155/2012/258353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022] Open
Abstract
The generation of efficient candidate vaccines against bovine tuberculosis will contribute to the control of this zoonotic disease. Rationally attenuated Mycobacterium bovis strains generated by knockout of virulence genes are promising candidate vaccines. However, to be effective, these candidate vaccines should at least maintain the immunological properties of their virulent parental M. bovis strains. Therefore, the aim of this study was to obtain an M. bovis strain deleted in the mce2 genes and evaluate the effect of the mutation on the immunological profile elicited by the bacteria in cattle. We showed that the activation of CD4+ T cells in cattle inoculated with the mutant strain was equivalent to that in animals inoculated with the parental strain. Moreover, after in vitro stimulation, peripheral blood mononuclear cells from animals inoculated with the mutant produced higher levels of mRNA Th-1 cytokines than the parental strain. Therefore, these results indicate that the mce2 mutant is a promising candidate vaccine against bovine tuberculosis.
Collapse
|
33
|
Checkley AM, Wyllie DH, Scriba TJ, Golubchik T, Hill AVS, Hanekom WA, McShane H. Identification of antigens specific to non-tuberculous mycobacteria: the Mce family of proteins as a target of T cell immune responses. PLoS One 2011; 6:e26434. [PMID: 22046285 PMCID: PMC3201954 DOI: 10.1371/journal.pone.0026434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
The lack of an effective TB vaccine hinders current efforts in combating the TB pandemic. One theory as to why BCG is less protective in tropical countries is that exposure to non-tuberculous mycobacteria (NTM) reduces BCG efficacy. There are currently several new TB vaccines in clinical trials, and NTM exposure may also be relevant in this context. NTM exposure cannot be accurately evaluated in the absence of specific antigens; those which are known to be present in NTM and absent from M. tuberculosis and BCG. We therefore used a bioinformatic pipeline to define proteins which are present in common NTM and absent from the M. tuberculosis complex, using protein BLAST, TBLASTN and a short sequence protein BLAST to ensure the specificity of this process. We then assessed immune responses to these proteins, in healthy South Africans and in patients from the United Kingdom and United States with documented exposure to NTM. Low level responses were detected to a cluster of proteins from the mammalian cell entry family, and to a cluster of hypothetical proteins, using ex vivo ELISpot and a 6 day proliferation assay. These early findings may provide a basis for characterising exposure to NTM at a population level, which has applications in the field of TB vaccine design as well as in the development of diagnostic tests.
Collapse
Affiliation(s)
- Anna M Checkley
- The Jenner Institute, Nuffield Department of Medicine, Oxford University, ORCRB, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
34
|
Martins DR, Pelizon AC, Zorzella-Pezavento SFG, Seger J, Santos Junior RR, Fonseca DM, Justulin LA, Silva CL, Sartori A. Exposure to Mycobacterium avium decreases the protective effect of the DNA vaccine pVAXhsp65 against Mycobacterium tuberculosis-induced inflammation of the pulmonary parenchyma. Scand J Immunol 2011; 73:293-300. [PMID: 21214611 DOI: 10.1111/j.1365-3083.2011.02510.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work investigated the effect of previous Mycobacterium avium exposure on the protective ability of the DNA vaccine pVAXhsp65 against inflammation in the pulmonary parenchyma. BALB/c mice were presensitized with heat-killed M. avium and then immunized with three doses of pVAXhsp65 prior to challenge with Mycobacterium tuberculosis. M. avium sensitization induced high levels of spontaneous IL-5 production that were concomitant with a positive delayed-type hypersensitivity reaction; antigen-specific IFN-γ production was also observed upon splenocyte stimulation. Prior exposure to M. avium resulted in altered cytokine and antibody production induced by immunization with pVAXhsp65; instead of a Th1 response, vaccinated mice previously exposed to M. avium developed a strong Th2 response. This switch to a Th2 response coincided with the loss of the anti-inflammatory effect of pVAXhsp65 vaccination previously observed in the pulmonary parenchyma of mice infected with M. tuberculosis. These results suggest that exposure to environmental mycobacteria can modulate immune responses induced by mycobacterial vaccines other than bacillus Calmette-Guérin.
Collapse
Affiliation(s)
- D R Martins
- Department of Microbiology and Immunology, Biosciences Institute, Univ Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization. Immunol Cell Biol 2009; 88:224-7. [PMID: 19918257 DOI: 10.1038/icb.2009.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.
Collapse
|
36
|
Buchan GS, Lee R, Wilson M, Slobbe L, Buddle BM, Young SL. Strains of
Mycobacterium avium
differentially activate human dendritic cells. Immunol Cell Biol 2009; 88:95-8. [DOI: 10.1038/icb.2009.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Glenn S Buchan
- Department of Microbiology and Immunology, University of Otago Dunedin New Zealand
| | - Rachel Lee
- Department of Microbiology and Immunology, University of Otago Dunedin New Zealand
| | - Michelle Wilson
- Department of Microbiology and Immunology, University of Otago Dunedin New Zealand
| | - Lynn Slobbe
- Department of Microbiology and Immunology, University of Otago Dunedin New Zealand
| | - Bryce M Buddle
- Hopkirk Research Institute, AgResearch, Massey University Palmerston North New Zealand
| | - Sarah L Young
- Department of Microbiology and Immunology, University of Otago Dunedin New Zealand
| |
Collapse
|
37
|
Ho P, Zhang L, Wei X, Seah GT. Mycobacterium chelonaesensitisation induces CD4+-mediated cytotoxicity against BCG. Eur J Immunol 2009; 39:1841-9. [DOI: 10.1002/eji.200838933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Mantilla-Beniers NB, Gomes MGM. Mycobacterial ecology as a modulator of tuberculosis vaccine success. Theor Popul Biol 2009; 75:142-52. [PMID: 19388142 DOI: 10.1016/j.tpb.2009.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Natural infection with Mycobacterium tuberculosis, as well as cross-immune reactions with the constituent of standard vaccines, attenuated M. bovis, and other species of mycobacteria confer partial immunity to subsequent M. tuberculosis infection. It has been shown in the past that the immune response to mycobacteria found naturally in the environment reduces the benefit of vaccination as assessed by means of vaccine efficacy. In this paper we show that efficacy is a poor measure of the potential success of new anti-tuberculous vaccines due to its inability to account for the relative weight of reinfection in disease dynamics. We advocate instead the use of vaccine effectiveness when evaluating the impact of new control methods against infections that confer partial immunity. Through the study of a simple model that incorporates cross-reactive responses to environmental mycobacteria (EM) and reinfection, we show how the particulars of the relation between EM abundance and vaccine effectiveness depend on the degree of protection conferred respectively by natural infection, vaccination and EM. The relative importance of reinfection as a transmission mechanism comes up as the most important source of variability in vaccine effectiveness. Our results suggest that control efforts should be placed in reducing the importance of reinfection through diminishing transmission rates. Vaccines that overcome preexisting immunity to other mycobacteria will still have varying degrees of success depending on the underlying rate of TB transmission.
Collapse
Affiliation(s)
- N B Mantilla-Beniers
- Instituto de Física, Universidad Nacional Autónoma de México, CP 04510, México, D.F., Mexico.
| | | |
Collapse
|
39
|
Capinos Scherer CF, Endsley JJ, de Aguiar JB, Jacobs WR, Larsen MH, Palmer MV, Nonnecke BJ, Ray Waters W, Mark Estes D. Evaluation of granulysin and perforin as candidate biomarkers for protection following vaccination with Mycobacterium bovis BCG or M. bovisDeltaRD1. Transbound Emerg Dis 2009; 56:228-39. [PMID: 19389081 DOI: 10.1111/j.1865-1682.2008.01058.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of improved vaccines against tuberculosis (TB) is directly linked to the investigation of new and better correlates of protection after vaccination against TB. Cloning and characterization of bovine homologues of the antimicrobial protein granulysin (Bo-lysin) and perforin by our group could be used as potential biomarkers for TB vaccination efficacy. In the present study, we examined the kinetics of granulysin, perforin, IFNgamma and Fas-L responses to Mycobacterium bovis purified protein derivative (PPD) stimulation by peripheral blood mononuclear cells from M. bovisDeltaRD1-, BCG- and non-vaccinated cattle. Gene expression profiles following PPD stimulation showed significant increases in transcripts for granulysin and IFNgamma in both CD4(+) and CD8(+) T cells in BCG-vaccinated as compared with non-vaccinated animals. Perforin and IFNgamma examined by flow cytometry, showed a difference of 1-2% more PPD-specific cells in BCG-vaccinated than non-vaccinated animals. In the vaccine trial, granulysin and perforin were significantly increased in both vaccine groups as compared with control after vaccination and challenge. IFNgamma expression was increased only after vaccination and secretion was higher in the control, non-protected group as compared with both vaccine groups demonstrating no correlation with protection upon vaccination. In summary, results shown here provide evidence that granulysin and perforin are prospective candidates as biomarkers of protection after vaccination against TB.
Collapse
|
40
|
Abstract
BACKGROUND Tuberculosis (TB), an infirmity that mainly affects the respiratory system, is the world's second deadliest infectious disease, with > 9 million new cases diagnosed in 2006. One-third of the world's population is now infected with the TB bacillus. According to the WHO, an estimated 1.7 million people died from TB in 2006. More precisely, every 15 seconds, one person dies due to TB worldwide. OBJECTIVE To review some of the key advances in the field of TB immunology and to discuss potential means for the development of new generation vaccines against TB disease. METHODS Systematic review of the published literature in various journals. RESULTS/CONCLUSION The current TB vaccine Bacillus Calmette-Guérin, developed > 85 years ago, reduces the risk of severe forms of TB in early childhood but is not very effective in preventing pulmonary TB in adolescents and adults, the populations with the highest rates of TB disease. TB is changing and evolving, making the development of new vaccines more crucial to controlling the pandemic. Rigorous research using cutting edge vaccine technology is occurring worldwide to combat TB, and various vaccination strategies, especially prime-boost, have been pursued by many scientists.
Collapse
Affiliation(s)
- Pramod K Giri
- University of Notre Dame, Eck Center for Global Health & Infectious Disease, Department of Biological Sciences, Notre Dame, IN-46556, USA.
| |
Collapse
|
41
|
Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M, de Waal Malefyt R, Vesosky B, Turner J. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5545-50. [PMID: 18832712 PMCID: PMC2728584 DOI: 10.4049/jimmunol.181.8.5545] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-10 is a potent immunomodulatory cytokine that affects innate and acquired immune responses. The immunological consequences of IL-10 production during pulmonary tuberculosis (TB) are currently unknown, although IL-10 has been implicated in reactivation TB in humans and with TB disease in mice. Using Mycobacterium tuberculosis-susceptible CBA/J mice, we show that blocking the action of IL-10 in vivo during chronic infection stabilized the pulmonary bacterial load and improved survival. Furthermore, this beneficial outcome was highly associated with the recruitment of T cells to the lungs and enhanced T cell IFN-gamma production. Our results indicate that IL-10 promotes TB disease progression. These findings have important diagnostic and/or therapeutic implications for the prevention of reactivation TB in humans.
Collapse
Affiliation(s)
- Gillian L. Beamer
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | | | - Barnabe D. Assogba
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Paul Stromberg
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | | | - Rene de Waal Malefyt
- Department of Immunology, Schering-Plough Biopharma (formerly DNAX), Palo Alto, CA 94304
| | - Bridget Vesosky
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Joanne Turner
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
- Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 2008; 26:3897-902. [PMID: 18554755 DOI: 10.1016/j.vaccine.2008.04.083] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 04/11/2008] [Accepted: 04/28/2008] [Indexed: 11/24/2022]
Abstract
The only vaccine available against tuberculosis (TB), BCG, so effective in experimental animal models, has been under scrutiny for a long time owing to its variable efficacy against pulmonary tuberculosis in adults. In this study, we evaluated whether anti-helminthic therapy prior to BCG vaccination could increase the immunogenicity of BCG vaccination in helminth infected population. We recruited volunteers with evidence of prior mycobacterial infection and who were asymptomatic carriers of helminths. The subjects were randomized to receive either anti-helminthic drugs or placebo. Three months later, BCG vaccination was administered to volunteers. Mycobacterial antigen-specific cytokine responses were assessed 2 months after vaccination. The results show that peripheral blood mononuclear cells obtained from the placebo group were found to have a lower frequency of IFN-gamma (129 vs 191, p=0.03) and IL-12 (149 vs 243, p=0.013) producing cells per 2 x 10(5) PBMC (peripheral blood mononuclear cells) when stimulated in vitro with a mycobacterial antigen mixture (purified protein derivative (PPD)) compared to those from the dewormed group. On the other hand the placebo group had higher frequency of TGF-beta producing cells in response to PPD (152 vs 81.3, p=0.002) or the T cell mitogen concanavalin A (Con A) (210 vs 157, p=0.03). However, no detectable IL-4 or IL-5 producing cells were observed when cells were stimulated with PPD. Comparable numbers of both cytokine producing cells were induced in both groups upon stimulation with concanavalin A (IL-4 217 vs 191, p=0.08) and IL-5 (131 vs 103, p=0.14). The data presented here demonstrate that chronic worm infection reduces the immunogenicity of BCG in humans and this was associated with increased TGF-beta production but not with enhanced Th2 immune response.
Collapse
|
43
|
Cross ML, Aldwell F. Oral vaccination against bovine tuberculosis with Mycobacterium bovis BCG. Expert Rev Vaccines 2007; 6:323-31. [PMID: 17542748 DOI: 10.1586/14760584.6.3.323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of a bacillus Calmette-Guerin (BCG)-based vaccine could represent a viable strategy for controlling bovine tuberculosis (TB), principally in those cases where a wildlife disease vector exists. This article focuses on recent progress in animal TB vaccinology, outlining that oral-route vaccination represents the most feasible means of distributing a vaccine to control disease in wildlife. Drawing on historical successes of previous wildlife vaccination programs, the article suggests how, and in what form, an oral-delivery BCG-based vaccine might become operational, considering the wide diversity of TB reservoir species and the inherent problems associated with field delivery of a live-attenuated microbial vaccine.
Collapse
Affiliation(s)
- Martin L Cross
- Immune Solutions, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | |
Collapse
|