1
|
Leng Y, Romero R, Xu Y, Galaz J, Slutsky R, Arenas-Hernandez M, Garcia-Flores V, Motomura K, Hassan SS, Reboldi A, Gomez-Lopez N. Are B cells altered in the decidua of women with preterm or term labor? Am J Reprod Immunol 2019; 81:e13102. [PMID: 30768818 DOI: 10.1111/aji.13102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The immunophenotype of B cells at the maternal-fetal interface (decidua) in labor at term and preterm labor is poorly understood. METHOD OF STUDY Decidual tissues were obtained from women with preterm or term labor and from non-labor gestational age-matched controls. Immunophenotyping of decidual B cells was performed using multicolor flow cytometry. RESULTS (a) In the absence of acute or chronic chorioamnionitis, total B cells were more abundant in the decidua parietalis of women who delivered preterm than in those who delivered at term, regardless of the presence of labor; (b) decidual transitional and naïve B cells were the most abundant B-cell subsets; (c) decidual B1 B cells were increased in women with either labor at term or preterm labor and chronic chorioamnionitis compared to those without this placental lesion; (d) decidual transitional B cells were reduced in women with preterm labor compared to those without labor; (e) naïve, class-switched, and non-class-switched B cells in the decidual tissues underwent mild alterations with the process of preterm labor; (f) decidual plasmablasts seemed to increase in women with either labor at term or preterm labor with chronic chorioamnionitis; and (g) decidual B cells expressed high levels of interleukin (IL)-12, IL-6, and/or IL-35. CONCLUSION Total B cells are not increased with the presence of preterm or term labor; yet, specific subsets (B1 and plasmablasts) undergo alterations in women with chronic chorioamnionitis. Therefore, B cells are solely implicated in the pathological process of preterm labor in a subset of women with chronic inflammation of the placenta. These findings provide insight into the immunology of the maternal-fetal interface in preterm and term labor.
Collapse
Affiliation(s)
- Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
2
|
Szymula A, Palermo RD, Bayoumy A, Groves IJ, Ba abdullah M, Holder B, White RE. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome. PLoS Pathog 2018; 14:e1006890. [PMID: 29462212 PMCID: PMC5834210 DOI: 10.1371/journal.ppat.1006890] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/02/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. Epstein-Barr virus (EBV) infects almost everyone. Once infected, people harbor the virus for life, shedding it in saliva. Infection of children is asymptomatic, but a first infection during adolescence or adulthood can cause glandular fever (infectious mononucleosis). EBV is also implicated in several different cancers. EBV infection of B cells (antibody-producing immune cells) can drive them to replicate almost indefinitely (‘transformation’), generating cell lines. We have investigated the role of an EBV protein (EBNA-LP) which is thought to support gene activation by the essential virus protein EBNA2. We have made an EBV in which the EBNA-LP gene has been disrupted. This virus (LPKO) shows several properties. 1. It is reduced in its ability to transform B cells; 2. ‘Naïve’ B cells (those whose antibodies have not adapted to fight infections) die two weeks after LPKO infection; 3. Some virus genes fail to turn on immediately after LPKO infection. 4. Binding of EBNA2 and various cellular factors to these genes is delayed. 5. EBNA-LP does not affect EBNA2-targeted cellular genes in the same way. This shows that EBNA-LP is more important in naïve B cells, and that it helps to turn on virus genes, but not cell genes.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Cell Transformation, Viral/genetics
- Cells, Cultured
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Female
- Gene Expression Regulation, Viral
- Genome, Viral
- HEK293 Cells
- Herpesvirus 4, Human/genetics
- Humans
- Infant, Newborn
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/virology
- Pregnancy
- Promoter Regions, Genetic
- Protein Binding/genetics
- Transcription Factors/metabolism
- Viral Proteins/physiology
Collapse
Affiliation(s)
- Agnieszka Szymula
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Richard D. Palermo
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Amr Bayoumy
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ian J. Groves
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mohammed Ba abdullah
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Beth Holder
- Section of Pediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, Cesbron JY, Dumestre-Pérard C, Jacob MC. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS One 2016; 11:e0162209. [PMID: 27657694 PMCID: PMC5033467 DOI: 10.1371/journal.pone.0162209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45) and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.
Collapse
Affiliation(s)
- Giovanna Clavarino
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Noémie Delouche
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Claire Vettier
- Laboratoire d'Hématologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - David Laurin
- TheREx, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Etablissement Français du Sang Rhônes-Alpes Auvergne, La Tronche, France
- Université Grenoble-Alpes, Grenoble, France
| | - Martine Pernollet
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Tatiana Raskovalova
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Jean-Yves Cesbron
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marie-Christine Jacob
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
- CNRS UMR 5309 and INSERM U1209, Institut Albert Bonniot, Grenoble, France
| |
Collapse
|
6
|
Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Dürig J, Küppers R. Cellular origin and pathophysiology of chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2012; 209:2183-98. [PMID: 23091163 PMCID: PMC3501361 DOI: 10.1084/jem.20120833] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unmutated CLL derives from unmutated mature CD5+ B cells and mutated CLL derives from CD5+CD27+ post–germinal center B cells. The cellular origin of chronic lymphocytic leukemia (CLL) is still debated, although this information is critical to understanding its pathogenesis. Transcriptome analyses of CLL and the main normal B cell subsets from human blood and spleen revealed that immunoglobulin variable region (IgV) gene unmutated CLL derives from unmutated mature CD5+ B cells and mutated CLL derives from a distinct, previously unrecognized CD5+CD27+ post–germinal center B cell subset. Stereotyped V gene rearrangements are enriched among CD5+ B cells, providing independent evidence for a CD5+ B cell derivation of CLL. Notably, these CD5+ B cell populations include oligoclonal expansions already found in young healthy adults, putatively representing an early phase in CLL development before the CLL precursor lesion monoclonal B cell lymphocytosis. Finally, we identified deregulated proteins, including EBF1 and KLF transcription factors, that were not detected in previous comparisons of CLL and conventional B cells.
Collapse
Affiliation(s)
- Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen 45122, Germany
| | | | | | | | | | | | | |
Collapse
|