1
|
Li C, Li B, Han M, Tian H, Gao J, Han D, Ling Z, Jing Y, Li N, Hua J. SPARC overexpression in allogeneic adipose-derived mesenchymal stem cells in dog dry eye model induced by benzalkonium chloride. Stem Cell Res Ther 2024; 15:195. [PMID: 38956738 PMCID: PMC11218109 DOI: 10.1186/s13287-024-03815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.
Collapse
Affiliation(s)
- Chenchen Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongkai Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaqi Gao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongyao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixi Ling
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanxiang Jing
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
3
|
Arqueros C, Salazar J, Gallardo A, Andrés M, Tibau A, Lidia Bell O, Artigas A, Lasa A, Ramón y Cajal T, Lerma E, Barnadas A. Secreted Protein Acidic and Rich in Cysteine ( SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients. Biomedicines 2023; 11:3231. [PMID: 38137452 PMCID: PMC10741005 DOI: 10.3390/biomedicines11123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) expression has been proposed as a prognostic and predictive biomarker for some cancer types, but knowledge about the predictive value of SPARC polymorphisms in the context of neoadjuvant therapy for breast cancer (BC) is lacking. In 132 HER2-negative BC patients treated with neoadjuvant chemotherapy, we determined polymorphisms in the SPARC gene and analyzed their association with outcome. We also determined SPARC protein expression in tumor tissue. SPARC rs19789707 was significantly associated with response to treatment according to the Miller and Payne system in the breast (multivariate: odds ratio (OR), 3.81; p = 0.028). This association was significant in the subgroup of patients with luminal tumors (univariate: p = 0.047). Regarding survival, two SPARC variants showed significant associations with event-free survival: the rs19789707 variant in the subgroup of luminal A tumors (univariate: p = 0.006), and the rs4958487 variant in the subgroup of luminal B tumors (univariate: p = 0.022). In addition, SPARC rs4958487, rs10065756, and rs12153644 were significantly correlated with SPARC protein expression. Our findings suggest that SPARC polymorphisms could be good predictors of treatment response and survival in BC patients treated with neoadjuvant chemotherapy, especially those with luminal tumors.
Collapse
Affiliation(s)
- Cristina Arqueros
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.A.); (M.A.)
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau—CERCA Center, 08041 Barcelona, Spain
| | - Alberto Gallardo
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau—CERCA Center, 08041 Barcelona, Spain; (A.G.)
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Marta Andrés
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.A.); (M.A.)
| | - Ariadna Tibau
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.A.); (M.A.)
| | - Olga Lidia Bell
- Translational Medical Oncology Laboratory, Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau—CERCA Center, 08041 Barcelona, Spain
| | - Alícia Artigas
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain (A.L.)
| | - Adriana Lasa
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain (A.L.)
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Ramón y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.A.); (M.A.)
| | - Enrique Lerma
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), Institut de Recerca Sant Pau—CERCA Center, 08041 Barcelona, Spain; (A.G.)
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Morphological Sciences, Faculty of Medicine Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.A.); (M.A.)
- Centro de Investigación Biomédica en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as an Exercise-Induced Gene: Towards Novel Molecular Therapies for Immobilization-Related Muscle Atrophy in Elderly Patients. Genes (Basel) 2022; 13:1014. [PMID: 35741776 PMCID: PMC9223229 DOI: 10.3390/genes13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Long periods of immobilization, among other etiologies, would result is muscle atrophy. Exercise is the best approach to reverse this atrophy. However, the limited or the non-ability to perform the required physical activity for such patients and the limited pharmacological options make developing novel therapeutic approaches a necessity. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced gene. Whereas the knock-out of this gene leads to a phenotype that mimics number of the ageing-induced and sarcopenia-related changes including muscle atrophy, overexpressing SPARC in mice or adding it to muscular cell culture produces similar effects as exercise including enhanced muscle mass, strength and metabolism. Therefore, this piece of writing aims to provide evidence supporting the potential use of SPARC/SPARC as a molecular therapy for muscle atrophy in the context of immobilization especially for elderly patients.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
5
|
Genetic Expression between Ageing and Exercise: Secreted Protein Acidic and Rich in Cysteine as a Potential “Exercise Substitute” Antiageing Therapy. Genes (Basel) 2022; 13:genes13060950. [PMID: 35741712 PMCID: PMC9223223 DOI: 10.3390/genes13060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Ageing is the effect of time on biological entities. It represents a risk factor for a variety of diseases and health disorders; thus, therapeutic options are required to tackle ageing issues. Modern geriatric medicine prescribes exercise to counteract ageing effects. This work presents secreted protein acidic and rich in cysteine (SPARC) as a potential antiageing therapy. Indeed, SPARC declines with ageing, exercise induces SPARC, and SPARC overexpression in mice mimics exercise. Thus, we hypothesize that SPARC is an exercise-induced factor that is beyond—at least part of—the antiageing effects induced by exercise. This could become a potential antiageing therapy for the elderly that counteracts ageing by mimicking the effects of exercise without needing to perform exercise. This is of particular importance because ageing usually reduces mobility and age-related diseases can reduce the ability to perform the required physical activity. On the other hand, the possibilities of mimicking exercise benefits via SPARC are not limited to ageing, and can be applied in various contexts in which exercise cannot be performed because of physical disabilities, health disorders, or limited mobility.
Collapse
|
6
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
7
|
Sangaletti S, Botti L, Gulino A, Lecis D, Bassani B, Portararo P, Milani M, Cancila V, De Cecco L, Dugo M, Tripodo C, Colombo MP. SPARC regulation of PMN clearance protects from pristane-induced lupus and rheumatoid arthritis. iScience 2021; 24:102510. [PMID: 34142027 PMCID: PMC8188360 DOI: 10.1016/j.isci.2021.102510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
The secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein with unexpected immunosuppressive function in myeloid cells. We investigated the role of SPARC in autoimmunity using the pristane-induced model of lupus that, in mice, mimics human systemic lupus erythematosus (SLE). Sparc -/- mice developed earlier and more severe renal disease, multi-organ parenchymal damage, and arthritis than the wild-type counterpart. Sparc +/- heterozygous mice showed an intermediate phenotype suggesting Sparc gene dosage in autoimmune-related events. Mechanistically, reduced Sparc expression in neutrophils blocks their clearance by macrophages, through defective delivery of don't-eat-me signals. Dying Sparc -/- neutrophils that escape macrophage scavenging become source of autoantigens for dendritic cell presentation and are a direct stimulation for γδT cells. Gene profile analysis of knee synovial biopsies from SLE-associated arthritis showed an inverse correlation between SPARC and key autoimmune genes. These results point to SPARC down-regulation as a leading event characterizing SLE and rheumatoid arthritis pathogenesis.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Bassani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
8
|
Yang J, Zhang J, Fan R, Zhao W, Han T, Duan K, Li X, Zeng P, Deng J, Zhang J, Yang X. Identifying Potential Candidate Hub Genes and Functionally Enriched Pathways in the Immune Responses to Quadrivalent Inactivated Influenza Vaccines in the Elderly Through Co-Expression Network Analysis. Front Immunol 2020; 11:603337. [PMID: 33343577 PMCID: PMC7746648 DOI: 10.3389/fimmu.2020.603337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Insights into the potential candidate hub genes may facilitate the generation of safe and effective immunity against seasonal influenza as well as the development of personalized influenza vaccines for the elderly at high risk of influenza virus infection. This study aimed to identify the potential hub genes related to the immune induction process of the 2018/19 seasonal quadrivalent inactivated influenza vaccines (QIVs) in the elderly ≥60 years by using weighted gene co-expression network analysis (WGCNA). From 63 whole blood samples from16 elderly individuals, a total of 13,345 genes were obtained and divided into eight co-expression modules, with two modules being significantly correlated with vaccine-induced immune responses. After functional enrichment analysis, genes under GO terms of vaccine-associated immunity were used to construct the sub-network for identification and functional validation of hub genes. MCEMP1 and SPARC were confirmed as the hub genes with an obvious effect on QIVs-induced immunity. The MCEMP1 expression was shown to be negatively correlated with the QIVs-associated reactogenicity within 7 days after vaccination, which could be suppressed by the CXCL 8/IL-8 and exacerbated by the Granzyme-B cytotoxic mediator. Meanwhile, the SPARC expression was found to increase the immune responses to the QIVs and contribute to the persistence of protective humoral antibody titers. These two genes can be used to predict QIVs-induced adverse reaction, the intensity of immune responses, and the persistence of humoral antibody against influenza. This work has shed light on further research on the development of personalized QIVs with appropriate immune responses and long-lasting immunity against the forthcoming seasonal influenza.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Renfeng Fan
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Wei Zhao
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Kai Duan
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Xinguo Li
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Peiyu Zeng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jinglong Deng
- Gaozhou Center for Disease Control and Prevention, Maoming City, China
| | - Jikai Zhang
- Guangdong Province Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine, Wuhan, China.,China Biotechnology Co., Ltd., Peking, China
| |
Collapse
|
9
|
Hu L, He F, Huang M, Zhao Q, Cheng L, Said N, Zhou Z, Liu F, Dai YS. SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells. Sci Rep 2020; 10:17581. [PMID: 33067534 PMCID: PMC7567887 DOI: 10.1038/s41598-020-74593-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of β-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc -/- mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc -/- mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic β cells.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifeng Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhao
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
10
|
Zhou Y, Peng J, Cheng L, Peng Y, Zhang M, Liu M, Avery J, Zhou J, Jiang Y. Secreted Protein Acidic and Cysteine Rich (SPARC) Regulates the Pathological Response to Ischemic Insults and Represents a Promising Therapeutic Target for Stroke Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Zhou
- Department of NeurosurgeryShenzhen People's HospitalJinan University Second Clinical Medical College1st Affiliated Hospital of Southern University of Science and Technology Shenzhen Guangdong 518020 China
- Department of NeurosurgeryYale University New Haven CT 06511 USA
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jing Peng
- National Engineering Research Center of Human Stem CellsCentral South University Changsha Hunan 410000 China
| | - Lamei Cheng
- National Engineering Research Center of Human Stem CellsCentral South University Changsha Hunan 410000 China
| | - Yong Peng
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Mingming Zhang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Min Liu
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jonathan Avery
- Department of NeurosurgeryYale University New Haven CT 06511 USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale University New Haven CT 06511 USA
| | - Yugang Jiang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| |
Collapse
|
11
|
Lo Iacono M, Russo E, Anzalone R, Baiamonte E, Alberti G, Gerbino A, Maggio A, La Rocca G, Acuto S. Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34 + Cells Mimicking a Hematopoietic Niche in a Direct Cell-cell Contact Culture System. Cell Transplant 2019; 27:117-129. [PMID: 29562783 PMCID: PMC6434478 DOI: 10.1177/0963689717737089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+ cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+ cell populations (one floating and one adherent to WJ-MSCs) with different phenotypic and functional characteristics. Both multipotent CD34+/CD38− and lineage-committed CD34+/CD38+ hematopoietic progenitors were expanded in a DC system. The former were significantly more represented in the adherent cell fraction than in the floating one (18.7 ± 11.2% vs. 9.7 ± 7.9% over the total CD34+ cells). Short-term colony forming unit (CFU) assays showed that HSPCs adherent to the stromal layer were able to generate a higher frequency of immature colonies (CFU-granulocyte/macrophage and burst-forming unit erythroid/large colonies) with respect to the floating cells. In the attempt to identify molecules that may play a role in supporting the observed ex vivo HSPC growth, we performed secretome analyses. We found a number of proteins involved in the HSPC homing, self-renewal, and differentiation in all tested conditions. It is important to note that a set of sixteen proteins, which are only in part reported to be expressed in any hematopoietic niche, were exclusively found in the DC system secretome. In conclusion, WJ-MSCs allowed a significant ex vivo expansion of multipotent as well as committed HSPCs. This may be relevant for future clinical applications.
Collapse
Affiliation(s)
- Melania Lo Iacono
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Eleonora Russo
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Rita Anzalone
- 3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,4 Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Baiamonte
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giusi Alberti
- 3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Aldo Gerbino
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Aurelio Maggio
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giampiero La Rocca
- 2 Section of Histology and Embryology, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,3 Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Santina Acuto
- 1 Campus of Hematology F. and P. Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| |
Collapse
|
12
|
Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol 2016; 174:3-14. [PMID: 27759879 DOI: 10.1111/bph.13653] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
The SPARC (secreted protein acidic and rich in cysteine) protein is matricellular molecule regulating interactions between cells and their surrounding extracellular matrix (ECM). This protein thus governs fundamental cellular functions such as cell adhesion, proliferation and differentiation. SPARC also regulates the expression and activity of numerous growth factors and matrix metalloproteinases essential for ECM degradation and turnover. Studies in SPARC-null mice have revealed a critical role for SPARC in tissue development, injury and repair and in the regulation of the immune response. In the lung, SPARC drives pathological responses in non-small cell lung cancer and idiopathic pulmonary fibrosis by promoting microvascular remodelling and excessive deposition of ECM proteins. Remarkably, although chronic airway conditions such as asthma and chronic obstructive pulmonary disease (COPD) involve significant remodelling in both the airway and vascular compartments, the role of SPARC in these conditions has thus far been overlooked. In this review, we discuss the role of SPARC in lung cancer and pulmonary fibrosis, as well as potential mechanisms by which it may contribute to the disease process in asthma and COPD.
Collapse
Affiliation(s)
- Sharon L I Wong
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria B Sukkar
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
13
|
Liu L, Pertsemlidis A, Ding LH, Story MD, Steinberg MH, Sebastiani P, Hoppe C, Ballas SK, Pace BS. Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp Biol Med (Maywood) 2016; 241:706-18. [PMID: 27022141 DOI: 10.1177/1535370216642047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the β-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤£3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of the BCL11A gene associated with HbF expression. In addition, we identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in the HBB locus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of known HBB locus regulatory elements identified SNPs 5' of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX 75083, USA
| | - Alexander Pertsemlidis
- Departments of Pediatrics and Cellular & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin H Steinberg
- Center of Excellence in Sickle Cell Disease Boston Medical Center, Pediatrics, Pathology and Laboratory Medicine, Boston University, Boston, MA 02215, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02215, USA
| | - Carolyn Hoppe
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Blogowski W, Dolegowska K, Deskur A, Dolegowska B, Starzyńska T. An Attempt to Evaluate Selected Aspects of "Bone-Fat Axis" Function in Healthy Individuals and Patients With Pancreatic Cancer. Medicine (Baltimore) 2015; 94:e1303. [PMID: 26266370 PMCID: PMC4616689 DOI: 10.1097/md.0000000000001303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, much attention has been paid to a potential biochemical cross-talk between the metabolism of the adipose tissue (AT) and bone (marrow), termed "bone-fat axis." We hypothesized that selected substances, participating in this "dialog," are associated with body mass and peripheral trafficking of bone marrow-derived stem cells (BMSCs) in both healthy individuals and patients with obesity-associated malignancies such as pancreatic adenocarcinoma.We performed an analysis of the systemic levels of selected substances involved in the regulation of bone (marrow) homeostasis (parathormone, calcitonin, osteopontin, osteonectin, stem cell factor [SCF], and fibroblast growth factor-23) in 35 generally healthy volunteers and 35 patients with pancreatic cancer. Results were correlated with the absolute number of circulating BMSCs and body mass values. Additionally, subcutaneous and visceral/omental AT levels of the aforementioned molecules were analyzed in lean and overweight/obese individuals.Intensified steady-state trafficking of only Lin-CD45 + CD133 + hematopoietic stem/progenitor cells was observed in overweight/obese individuals and this was associated with BMI values and elevated levels of both osteonectin and SCF, which also correlated with BMI. In comparison to healthy individuals, patients with cancer had significantly higher osteopontin levels and lower values of both osteonectin and osteonectin/osteopontin ratio. While no significant correlation was observed between BMI and the number of circulating BMSCs in patients with cancer, peripheral trafficking of CD34 + KDR + CD31 + CD45-endothelial progenitor cells and CD105 + STRO-1 + CD45-mesenchymal stem cells was associated with the osteonectin/osteopontin ratio, which also correlated with BMI (r = 0.52; P < 0.05). AT levels of the examined substances were similar to those measured in the plasma, except for osteonectin, which was about 10 times lower.Our study highlights the potential role of osteonectin, osteopontin, and SCF as communication signals between the bone (marrow) and AT in both healthy individuals and patients with pancreatic cancer. We postulate that these molecules may be overlooked biochemical players linking body mass and BMSCs with obesity-associated cancer development and/or progression in humans.
Collapse
Affiliation(s)
- Wojciech Blogowski
- From the Department of Internal Medicine, University of Zielona Góra, Zielona Góra, Poland (WB); Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland (KD); Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland (AD); Department of Microbiology and Immunological Diagnostics, Pomeranian Medical University in Szczecin, Szczecin, Poland (BD); and Department of Gastroenterology and Internal Medicine, Warsaw Medical University, Warsaw, Poland (TS)
| | | | | | | | | |
Collapse
|