1
|
Dander E, Pischiutta F, Di Marzo N, Pascente R, Panini N, Fallati A, Biondi A, Zanier ER, D'Amico G. Development of a 3D ex vivo model of brain-leukemia interaction to study the role of activin A in the central nervous system microenvironment. Sci Rep 2025; 15:18915. [PMID: 40442333 PMCID: PMC12122680 DOI: 10.1038/s41598-025-03877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
B-cell type acute lymphoblastic leukemia (B-ALL) is the most common type of childhood malignancy. Although the survival rate nowadays exceeds 90%, central nervous system (CNS) involvement is associated with a poor outcome. Experimental models are needed to study the interaction between leukemia cells and the brain microenvironment to unravel new targets for drug intervention. We developed a novel three-dimensional (3D) ex vivo model utilizing murine organotypic cortical brain slices microinjected with human B-ALL cells, serving as a platform for investigating the influence of Activin A, a pro-leukemic factor, on leukemia invasion into the CNS. After injection, B-ALL cells exponentially increased in the cortical slices, promoting tissue mortality and an anti-inflammatory microenvironment phenotype, as demonstrated by morphological and gene expression alterations in microglia and astrocytes. Of note, Activin A pretreatment increased leukemia proliferation and exacerbated the effects on the microenvironment. Overall, our model presents an ideal platform for investigating the cross-talk between tumors and the brain microenvironment and the influence of disease-modifying factors. Moreover, it could facilitate drug screening across a spectrum of CNS cancers, meanwhile reducing animal usage.
Collapse
Affiliation(s)
- Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Francesca Pischiutta
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Noemi Di Marzo
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Rosaria Pascente
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicolò Panini
- Departement of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, 20157, Italy
| | - Alessandra Fallati
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Andrea Biondi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Elisa R Zanier
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy.
| |
Collapse
|
2
|
Sampietro M, Cellani M, Scielzo C. B cell mechanobiology in health and disease: emerging techniques and insights into therapeutic responses. FEBS Lett 2025. [PMID: 40387441 DOI: 10.1002/1873-3468.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Cells sense physical cues from their environment and convert them into biochemical responses through mechanotransduction. Unlike solid tumours, the role of such forces in haematological cancers is underexplored. In this context, immune cells experience dynamic mechanical stimuli as they migrate, extravasate and home to specific tissues. Understanding how these forces shape B-cell function and malignancy represents a groundbreaking area of research. This review examines the key mechanosensory pathways and molecules involved in lymphocyte mechanotransduction, beginning with mechanosensory proteins at the plasma membrane, followed by intracellular signal propagation through the cytoskeleton, eventually highlighting the nucleus as a 'signal actuator'. Subsequently, we cover some measurement approaches and advanced systems to investigate tumour biomechanics, highlighting their application in the context of B cells. Finally, we focus on the implications of mechanobiology in leukaemia, identifying molecules involved in B-cell malignancies that could serve as potential 'mechano-targets' for personalised therapies. This review emphasises the need to understand how lymphocytes generate, sense and respond to mechanical stimuli, which could open avenues for future biomedical innovations. Impact statement Our review is particularly valuable in highlighting the underexplored role of mechanobiology in B cell function and malignancies, while also discussing emerging techniques that can advance this research area. It bridges mechanotransduction, immunology, and cancer biology in a way that will be of interest to researchers across these three main fields.
Collapse
Affiliation(s)
- Marta Sampietro
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Cellani
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B Cells biology and 3D Modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Chang F, Wang L, Kim Y, Kim M, Lee S, Lee SW. The Aryl Hydrocarbon Receptor Regulates Invasiveness and Motility in Acute Myeloid Leukemia Cells through Expressional Regulation of Non-Muscle Myosin Heavy Chain IIA. Int J Mol Sci 2024; 25:8147. [PMID: 39125717 PMCID: PMC11311371 DOI: 10.3390/ijms25158147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent type of hematopoietic malignancy. Despite recent therapeutic advancements, the high relapse rate associated with extramedullary involvement remains a challenging issue. Moreover, therapeutic targets that regulate the extramedullary infiltration of AML cells are still not fully elucidated. The Aryl Hydrocarbon Receptor (AHR) is known to influence the progression and migration of solid tumors; however, its role in AML is largely unknown. This study explored the roles of AHR in the invasion and migration of AML cells. We found that suppressed expression of AHR target genes correlated with an elevated relapse rate in AML. Treatment with an AHR agonist on patient-derived AML cells significantly decreased genes associated with leukocyte trans-endothelial migration, cell adhesion, and regulation of the actin cytoskeleton. These results were further confirmed in THP-1 and U937 AML cell lines using AHR agonists (TCDD and FICZ) and inhibitors (SR1 and CH-223191). Treatment with AHR agonists significantly reduced Matrigel invasion, while inhibitors enhanced it, regardless of the Matrigel's stiffness. AHR agonists significantly reduced the migration rate and chemokinesis of both cell lines, but AHR inhibitors enhanced them. Finally, we found that the activity of AHR and the expression of NMIIA are negatively correlated. These findings suggest that AHR activity regulates the invasiveness and motility of AML cells, making AHR a potential therapeutic target for preventing extramedullary infiltration in AML.
Collapse
MESH Headings
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/agonists
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Cell Movement
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Neoplasm Invasiveness
- Nonmuscle Myosin Type IIA/metabolism
- Nonmuscle Myosin Type IIA/genetics
- Cell Line, Tumor
- Female
- Male
- Gene Expression Regulation, Leukemic
- Middle Aged
- Aged
- THP-1 Cells
- U937 Cells
- Adult
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Lele Wang
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Youngjoon Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sunwoo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Månsson A, Ušaj M, Moretto L, Matusovsky O, Velayuthan LP, Friedman R, Rassier DE. New paradigms in actomyosin energy transduction: Critical evaluation of non-traditional models for orthophosphate release. Bioessays 2023; 45:e2300040. [PMID: 37366639 DOI: 10.1002/bies.202300040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Release of the ATP hydrolysis product ortophosphate (Pi) from the active site of myosin is central in chemo-mechanical energy transduction and closely associated with the main force-generating structural change, the power-stroke. Despite intense investigations, the relative timing between Pi-release and the power-stroke remains poorly understood. This hampers in depth understanding of force production by myosin in health and disease and our understanding of myosin-active drugs. Since the 1990s and up to today, models that incorporate the Pi-release either distinctly before or after the power-stroke, in unbranched kinetic schemes, have dominated the literature. However, in recent years, alternative models have emerged to explain apparently contradictory findings. Here, we first compare and critically analyze three influential alternative models proposed previously. These are either characterized by a branched kinetic scheme or by partial uncoupling of Pi-release and the power-stroke. Finally, we suggest critical tests of the models aiming for a unified picture.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| |
Collapse
|
5
|
González-Novo R, de Lope-Planelles A, Cruz Rodríguez MP, González-Murillo Á, Madrazo E, Acitores D, García de Lacoba M, Ramírez M, Redondo-Muñoz J. 3D environment controls H3K4 methylation and the mechanical response of the nucleus in acute lymphoblastic leukemia cells. Eur J Cell Biol 2023; 102:151343. [PMID: 37494871 DOI: 10.1016/j.ejcb.2023.151343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, and the infiltration of leukemic cells is critical for disease progression and relapse. Nuclear deformability plays a critical role in cancer cell invasion through confined spaces; however, the direct impact of epigenetic changes on the nuclear deformability of leukemic cells remains unclear. Here, we characterized how 3D collagen matrix conditions induced H3K4 methylation in ALL cell lines and clinical samples. We used specific shRNA and chemical inhibitors to target WDR5 (a core subunit involved in H3K4 methylation) and determined that targeting WDR5 reduced the H3K4 methylation induced by the 3D environment and the invasiveness of ALL cells in vitro and in vivo. Intriguingly, targeting WDR5 did not reduce the adhesion or the chemotactic response of leukemia cells, suggesting a different mechanism by which H3K4 methylation might govern ALL cell invasiveness. Finally, we conducted biochemical, and biophysical experiments to determine that 3D environments promoted the alteration of the chromatin, the morphology, and the mechanical behavior of the nucleus in ALL cells. Collectively, our data suggest that 3D environments control an upregulation of H3K4 methylation in ALL cells, and targeting WDR5 might serve as a promising therapeutic target against ALL invasiveness in vivo.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - David Acitores
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Manuel Ramírez
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Zhang M, Yang L, Chen D, Heisterkamp N. Drug-tolerant persister B-cell precursor acute lymphoblastic leukemia cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530540. [PMID: 36909619 PMCID: PMC10002708 DOI: 10.1101/2023.02.28.530540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Reduced responsiveness of precursor B-acute lymphoblastic leukemia (BCP-ALL) to chemotherapy can be inferred when leukemia cells persist after 28 days of initial treatment. Survival of these long-term persister (LTP) / minimal residual disease (MRD) cells is partly due to bone marrow stromal cells that protect them under conditions of chemotherapy stress. We used RNA-seq to analyse BCP-ALL cells that survived a long-term, 30-day vincristine chemotherapy treatment while in co-culture with bone marrow stromal cells. RNAs of as many as 10% of the protein-encoding genes were differentially expressed. There was substantial overlap with genes associated with MRD cell persistence reported in other studies. The top pathway regulated in the LTP cells was that involving p53, a master regulator of a spectrum of responses relevant to drug resistance and cytotoxic drug exposure including control of autophagy. We tested a select number of genes for contribution to BCP-ALL cell survival using Cas9/CRISPR in a 2-step selection, initially for overall effect on cell fitness, followed by 21 days of exposure to vincristine. Many genes involved in autophagy and lysosomal function were found to contribute to survival both at steady-state and during drug treatment. We also identified MYH9, NCSTN and KIAA2013 as specific genes contributing to fitness of BCP-ALL cells. CD44 was not essential for growth under steady state conditions but was needed for survival of vincristine treatment. Finally, although the drug transporter ABCC1/MRP1 is not overexpressed in BCP-ALL, a functional gene was needed for DTP cells to survive treatment with vincristine. This suggests that addition of possible ABCC1 inhibitors during induction therapy could provide benefit in eradication of minimal residual disease in patients treated with a chemotherapy regimen that includes vincristine.
Collapse
|
7
|
Multistep orthophosphate release tunes actomyosin energy transduction. Nat Commun 2022; 13:4575. [PMID: 35931685 PMCID: PMC9356070 DOI: 10.1038/s41467-022-32110-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Muscle contraction and a range of critical cellular functions rely on force-producing interactions between myosin motors and actin filaments, powered by turnover of adenosine triphosphate (ATP). The relationship between release of the ATP hydrolysis product ortophosphate (Pi) from the myosin active site and the force-generating structural change, the power-stroke, remains enigmatic despite its central role in energy transduction. Here, we present a model with multistep Pi-release that unifies current conflicting views while also revealing additional complexities of potential functional importance. The model is based on our evidence from kinetics, molecular modelling and single molecule fluorescence studies of Pi binding outside the active site. It is also consistent with high-speed atomic force microscopy movies of single myosin II molecules without Pi at the active site, showing consecutive snapshots of pre- and post-power stroke conformations. In addition to revealing critical features of energy transduction by actomyosin, the results suggest enzymatic mechanisms of potentially general relevance. Release of the ATP hydrolysis product orthophosphate (Pi) from the myosin active site is central in force generation but is poorly understood. Here, Moretto et al. present evidence for multistep Pi-release reconciling apparently contradictory results.
Collapse
|
8
|
Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol Med 2021; 28:155-169. [PMID: 34973934 DOI: 10.1016/j.molmed.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
Cells sense the biophysical properties of the tumor microenvironment (TME) and adopt these signals in their development, progression, and metastatic dissemination. Recent work highlights the mechano-responsiveness of cells in tumors and the underlying mechanisms. Furthermore, approaches to mechano-modulating diverse types of cell have emerged aiming to inhibit tumor growth and metastasis. These include targeting mechanosensitive machineries in cancer cells to induce apoptosis, intervening matrix stiffening incurred by cancer-associated fibroblasts (CAFs) in both primary and metastatic tumor sites, and modulating matrix mechanics to improve immune cell therapeutic efficacy. This review is envisaged to help scientists and clinicians in cancer research to advance understanding of the cellular mechano-responsiveness in TME, and to harness these concepts for cancer mechanotherapies.
Collapse
|
9
|
Dander E, Palmi C, D’Amico G, Cazzaniga G. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia. Int J Mol Sci 2021; 22:ijms22094426. [PMID: 33922612 PMCID: PMC8122951 DOI: 10.3390/ijms22094426] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.
Collapse
Affiliation(s)
- Erica Dander
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | - Chiara Palmi
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | | | | |
Collapse
|
10
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
11
|
Development of anti-human CADM1 monoclonal antibodies as a potential therapy for adult T-cell leukemia/lymphoma. Int J Hematol 2020; 112:496-503. [PMID: 32656636 DOI: 10.1007/s12185-020-02939-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/12/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a highly invasive and refractory T-cell malignancy, with poor prognosis. We previously identified that cell adhesion molecule 1 (CADM1) is overexpressed consistently in ATLL cells, and that CADM1 expression increases the adhesion capacity of ATLL cells to endothelial cells and promotes the organ invasion of ATLL cells in a xenograft mouse model. In this study, we first show that newly developed several anti-human CADM1 antibodies, which were complete human IgG antibodies generated by phage display method, specifically recognize CADM1 on ATLL cells. Although most of the CADM1 antibodies did not have a direct cytotoxic effect against CADM1-positive ATLL cells, clone 089-084 exhibited weak but significant antibody-dependent cell-mediated cytotoxic activity. Moreover, clone 103-189 effectively inhibits the interaction between endothelial cells and CADM1-positive ATLL cells. Furthermore, in mice bearing intra-splenic transplantation of EL4 mouse lymphoma cells expressing CADM1, the treatment of 103-189 significantly suppressed the organ invasion of CADM1-positive EL4 cells, resulting in improved survival time of mice. Therefore, since the anti-CADM1 antibody may be useful for the suppression of organ invasion in ATLL patients, combination use of the anti-CADM1 antibody with chemotherapy drugs could be beneficial for the efficient elimination of ATLL cells.
Collapse
|
12
|
Zhang C, Zhong JF, Zhang X. Revealing the molecular mechanism of central nervous system leukemia with single-cell technology. Crit Rev Oncol Hematol 2020; 153:103046. [PMID: 32650214 DOI: 10.1016/j.critrevonc.2020.103046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2019] [Accepted: 06/29/2020] [Indexed: 01/31/2023] Open
Abstract
Central nervous system leukemia (CNSL) is a severe complication of acute leukemia, with serious consequences for life quality and expectancy. The molecular mechanism of CNSL is unclear at present. Thus, determining appropriate prevention and therapeutic strategies for CNSL remain challenging. Currently, inferences regarding gene functions are based on the measurement of average gene expression in a bulk lysate. However, leukemia cells are a heterogeneous population in which the expression of critical genes may be masked by many unrelated genes. Single-cell sequencing may therefore be the best way to explore the development of CNSL in the bone marrow and peripheral blood at diagnosis and subsequent time points, in order to detect potential targets and prevent the development of CNSL. In this review, we first discuss the possible mechanism of CNSL, then describe the heterogeneity of leukemia cells. Finally, we focus on the role of single-cell technology in preventing and treating CNSL.
Collapse
Affiliation(s)
- Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China; Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China; Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Thompson SB, Sandor AM, Lui V, Chung JW, Waldman MM, Long RA, Estin ML, Matsuda JL, Friedman RS, Jacobelli J. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 2020; 9:58046. [PMID: 32510333 PMCID: PMC7308091 DOI: 10.7554/elife.58046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023] Open
Abstract
Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Adam M Sandor
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Victor Lui
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Monique M Waldman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Miriam L Estin
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
14
|
Targeting Actomyosin Contractility Suppresses Malignant Phenotypes of Acute Myeloid Leukemia Cells. Int J Mol Sci 2020; 21:ijms21103460. [PMID: 32422910 PMCID: PMC7279019 DOI: 10.3390/ijms21103460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Actomyosin-mediated contractility is required for the majority of force-driven cellular events such as cell division, adhesion, and migration. Under pathological conditions, the role of actomyosin contractility in malignant phenotypes of various solid tumors has been extensively discussed, but the pathophysiological relevance in hematopoietic malignancies has yet to be elucidated. In this study, we found enhanced actomyosin contractility in diverse acute myeloid leukemia (AML) cell lines represented by highly expressed non-muscle myosin heavy chain A (NMIIA) and increased phosphorylation of the myosin regulatory light chain. Genetic and pharmacological inhibition of actomyosin contractility induced multivalent malignancy- suppressive effects in AML cells. In this context, perturbed actomyosin contractility enhances AML cell apoptosis through cytokinesis failure and aryl hydrocarbon receptor activation. Moreover, leukemic oncogenes were downregulated by the YAP/TAZ-mediated mechanotransduction pathway. Our results provide a theoretical background for targeting actomyosin contractility to suppress the malignancy of AML cells.
Collapse
|
15
|
Zhou F, Wen Y, Jin R, Chen H. New attempts for central nervous infiltration of pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev 2020; 38:657-671. [PMID: 31820149 DOI: 10.1007/s10555-019-09827-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cure rate of acute lymphoblastic leukemia (ALL), the commonest childhood cancer, has been sharply improved and reached almost 90% ever since the central nervous system (CNS)-directed therapy proposed in the 1960s. However, relapse, particularly in the central nervous system (CNS), is still a common cause of treatment failure. Up to now, the classic CNS-directed treatment for CNS leukemia (CNSL) has been aslant from cranial radiation to high-dose system chemotherapy plus intrathecal (IT) chemotherapy for the serious side effects of cranial radiation. The neurotoxic effects of chemotherapy and IT chemotherapy have been reported in recent years as well. For better prevention and treatment of CNSL, plenty of studies have tried to improve the detection sensitivity for CNSL and prevent CNSL from happening by targeting cytokines and chemokines which could be key factors for the traveling of ALL cells into the CNS. Other studies also have aimed to completely kill ALL cells (including dormant cells) in the CNS by promoting the entering of chemotherapy drugs into the CNS or targeting the components of the CNS niche which could be in favor of the survival of ALL cells in CNS. The aim of this review is to discuss the imperfection of current diagnostic methods and treatments for CNSL, as well as new attempts which could be significant for better elimination of CNSL.
Collapse
Affiliation(s)
- Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Intermittent rolling is a defect of the extravasation cascade caused by Myosin1e-deficiency in neutrophils. Proc Natl Acad Sci U S A 2019; 116:26752-26758. [PMID: 31811025 DOI: 10.1073/pnas.1902502116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.
Collapse
|
17
|
Jonart LM, Ebadi M, Basile P, Johnson K, Makori J, Gordon PM. Disrupting the leukemia niche in the central nervous system attenuates leukemia chemoresistance. Haematologica 2019; 105:2130-2140. [PMID: 31624109 PMCID: PMC7395284 DOI: 10.3324/haematol.2019.230334] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Protection from acute lymphoblastic leukemia relapse in the central nervous system (CNS) is crucial to survival and quality of life for leukemia patients. Current CNS-directed therapies cause significant toxicities and are only partially effective. Moreover, the impact of the CNS microenvironment on leukemia biology is poorly understood. In this study we showed that leukemia cells associated with the meninges of xenotransplanted mice, or co-cultured with meningeal cells, exhibit enhanced chemoresistance due to effects on both apoptosis balance and quiescence. From a mechanistic standpoint, we found that leukemia chemoresistance is primarily mediated by direct leukemia-meningeal cell interactions and overcome by detaching the leukemia cells from the meninges. Next, we used a co-culture adhesion assay to identify drugs that disrupted leukemia-meningeal adhesion. In addition to identifying several drugs that inhibit canonical cell adhesion targets we found that Me6TREN (Tris[2-(dimethylamino)ethyl]amine), a novel hematopoietic stem cell-mobilizing compound, also disrupted leukemia-meningeal adhesion and enhanced the efficacy of cytarabine in treating CNS leukemia in xenotransplanted mice. This work demonstrates that the meninges exert a critical influence on leukemia chemoresistance, elucidates mechanisms of relapse beyond the well-described role of the blood-brain barrier, and identifies novel therapeutic approaches for overcoming chemoresistance.
Collapse
Affiliation(s)
- Leslie M Jonart
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Ebadi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrick Basile
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly Johnson
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Makori
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter M Gordon
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Yan SLS, Hwang IY, Kamenyeva O, Kehrl JH. In Vivo F-Actin Filament Organization during Lymphocyte Transendothelial and Interstitial Migration Revealed by Intravital Microscopy. iScience 2019; 16:283-297. [PMID: 31203185 PMCID: PMC6581778 DOI: 10.1016/j.isci.2019.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Actin is essential for many cellular processes including cell motility. Yet the organization of F-actin filaments during lymphocyte transendothelial migration (TEM) and interstitial migration have not been visualized. Here we report a high-resolution confocal intravital imaging technique with LifeAct-GFP bone marrow reconstituted mice, which allowed visualization of lymphocyte F-actin in vivo. We find that naive lymphocytes preferentially cross high endothelial venules (HEVs) using paracellular rather than the transcellular route. During both modes of transmigration F-actin levels rise at the lymphocyte leading edge as the cell engages the TEM site. Once the lymphocytes breach the endothelium, they briefly reside in HEV pockets before crossing into the parenchyma. During interstitial migration dynamic actin-based protrusions rapidly form and collapse to help drive motility. Using a panel of inhibitors, we established roles for actin regulators and myosin II in lymphocyte TEM. This study provides further insights into lymphocyte TEM and interstitial migration in vivo. Established high-resolution imaging technique to visualize HEVs and F-actin in vivo Naive lymphocytes mainly cross HEVs via paracellular route by breaking junctions Rapid re-organization of cellular F-actin during in vivo TEM and migration In vivo F-actin dynamics is important for lymphocyte-endothelium interactions
Collapse
Affiliation(s)
- Serena L S Yan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA.
| | - Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA
| | - Olena Kamenyeva
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA.
| |
Collapse
|
19
|
Kinjyo I, Bragin D, Grattan R, Winter SS, Wilson BS. Leukemia-derived exosomes and cytokines pave the way for entry into the brain. J Leukoc Biol 2019; 105:741-753. [PMID: 30702754 DOI: 10.1002/jlb.3a0218-054r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
Infiltration of acute lymphoblastic leukemia (ALL) blasts into the CNS remains as a major clinical problem, with high risk for chemotherapy-resistant relapse and treatment-related morbidity. Despite the common inclusion of CNS prophylaxis treatments in therapy regimens, there are significant gaps in understanding the mechanisms that mediate leukemia cell entry into the CNS as well as roles for resident cells in the brain. In this study, we employ a xenograft model of human B cell precursor (BCP)-ALL in immunocompromised mice. This model system recapitulates key pathological characteristics of leptomeningeal involvement seen in patients and provides insights into rare cases that involve parenchymal invasion. We examine the infiltration of engrafted leukemia blasts into brains of recipient mice and provide evidence that the interaction between blasts and brain resident cells causes aberrant activation of host cells in the brain microenvironment. BCP-ALL blasts also release multiple cytokines and exosomes containing IL-15 that bind and are internalized by astrocytes and brain vessel endothelial cells. Leukemic invasion is linked to production of VEGF-AA by astrocytes and disruption of the blood-brain-barrier (BBB) integrity. Knockdown of either IL-15 or IL-15Rα in the NALM6 cell line decreases CNS infiltration in engrafted mice. These results provide important insights into the multiple mechanisms by which lymphoblasts modulate the brain microenvironment to breach the BBB for metastatic invasion.
Collapse
Affiliation(s)
- Ichiko Kinjyo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Denis Bragin
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rachel Grattan
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Stuart S Winter
- Blood Diseases and Cancer Program, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
20
|
Thompson SB, Wigton EJ, Krovi SH, Chung JW, Long RA, Jacobelli J. The Formin mDia1 Regulates Acute Lymphoblastic Leukemia Engraftment, Migration, and Progression in vivo. Front Oncol 2018; 8:389. [PMID: 30294591 PMCID: PMC6158313 DOI: 10.3389/fonc.2018.00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Leukemias typically arise in the bone marrow and then spread to the blood and into other tissues. To disseminate into tissues, leukemia cells migrate into the blood stream and then exit the circulation by migrating across vascular endothelial barriers. Formin proteins regulate cytoskeletal remodeling and cell migration of normal and malignant cells. The Formin mDia1 is highly expressed in transformed lymphocytes and regulates lymphocyte migration. However, the role of mDia1 in regulating leukemia progression in vivo is unknown. Here, we investigated how mDia1 mediates the ability of leukemia cells to migrate and disseminate in vivo. For these studies, we used a mouse model of Bcr-Abl pre-B cell acute lymphoblastic leukemia. Our data showed that mDia1-deficient leukemia cells have reduced chemotaxis and ability to complete transendothelial migration in vitro. In vivo, mDia1 deficiency reduced the ability of leukemia cells to engraft in recipient mice. Furthermore, leukemia dissemination to various tissues and leukemia progression were inhibited by mDia1 depletion. Finally, mDia1 depletion in leukemia cells resulted in prolonged survival of recipient mice in a leukemia transfer model. Overall, our data show that the Formin mDia1 mediates leukemia cell migration, and drives leukemia engraftment and progression in vivo, suggesting that targeting mDia1 could provide a new method for treatment of leukemia.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sai Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
G9a Correlates with VLA-4 Integrin and Influences the Migration of Childhood Acute Lymphoblastic Leukemia Cells. Cancers (Basel) 2018; 10:cancers10090325. [PMID: 30213075 PMCID: PMC6162492 DOI: 10.3390/cancers10090325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. As ALL progresses, leukemic cells cross the endothelial barrier and infiltrate other tissues. Epigenetic enzymes represent novel therapeutic targets in hematological malignancies, and might contribute to cells' capacity to migrate across physical barriers. Although many molecules drive this process, the role of the nucleus and its components remain unclear. We report here, for the first time, that the expression of G9a (a histone methyltransferase related with gene silencing) correlates with the expression of the integrin subunit α4 in children with ALL. We have demonstrated that G9a depletion or its inhibition with BIX01294 abrogated the ability of ALL cells to migrate through an endothelial monolayer. Moreover, G9a-depleted and BIX01294-treated cells presented bigger nuclei and more adherent phenotype than control cells on endothelial monolayers. Blocking G9a did not affect the cell cytoskeleton or integrin expression of ALL cell lines, and only its depletion reduced slightly F-actin polymerization. Similarly to the transendothelial migration, G9a inhibition impaired the cell migration induced by the integrin VLA-4 (α4β1) of primary cells and ALL cell lines through narrow spaces in vitro. Our results suggest a cellular connection between G9a and VLA-4, which underlies novel functions of G9a during ALL cell migration.
Collapse
|
22
|
Rauscher AÁ, Gyimesi M, Kovács M, Málnási-Csizmadia A. Targeting Myosin by Blebbistatin Derivatives: Optimization and Pharmacological Potential. Trends Biochem Sci 2018; 43:700-713. [PMID: 30057142 DOI: 10.1016/j.tibs.2018.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Blebbistatin is a widely used inhibitor of myosin 2 that enables the study of a broad range of cytoskeleton-related processes. However, blebbistatin has several limitations hindering its applicability: it is fluorescent, poorly water soluble, cytotoxic, and prone to (photo)degradation. Despite these adverse effects, being the only available myosin 2-specific inhibitor, blebbistatin is rather a choice of necessity. Blebbistatin has been modified to improve its properties and some of the new compounds have proven to be useful replacements of the original molecule. This review summarizes recent results on blebbistatin development. We also discuss the pharmacological perspectives of these efforts, as myosins are becoming promising drug target candidates for a variety of conditions ranging from neurodegeneration to muscle disease, wound healing, and cancer metastasis.
Collapse
Affiliation(s)
- Anna Á Rauscher
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Máté Gyimesi
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Mihály Kovács
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary.
| |
Collapse
|
23
|
Abstract
( S)-Blebbistatin, a chiral tetrahydropyrroloquinolinone, is a widely used and well-characterized ATPase inhibitor selective for myosin II. The central role of myosin II in many normal and pathological biological processes has been revealed with the aid of this small molecule. The first part of this manuscript provides a summary of myosin II and ( S)-blebbistatin literature from a medicinal chemist's perspective. The second part of this perspective deals with the physicochemical deficiencies that trouble the use of ( S)-blebbistatin in advanced biological settings: low potency and solubility, fluorescence interference, (photo)toxicity, and stability issues. A large toolbox of analogues has been developed in which particular shortcomings have been addressed. This perspective provides a necessary overview of these developments and presents guidelines for selecting the best available analogue for a given application. As the unmet need for high-potency analogues remains, we also propose starting points for medicinal chemists in search of nanomolar myosin II inhibitors.
Collapse
|
24
|
Wong SW, Lenzini S, Shin JW. Perspective: Biophysical regulation of cancerous and normal blood cell lineages in hematopoietic malignancies. APL Bioeng 2018; 2:031802. [PMID: 31069313 PMCID: PMC6324213 DOI: 10.1063/1.5025689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
It is increasingly appreciated that physical forces play important roles in cancer biology, in terms of progression, invasiveness, and drug resistance. Clinical progress in treating hematological malignancy and in developing cancer immunotherapy highlights the role of the hematopoietic system as a key model in devising new therapeutic strategies against cancer. Understanding mechanobiology of the hematopoietic system in the context of cancer will thus yield valuable fundamental insights that can information about novel cancer therapeutics. In this perspective, biophysical insights related to blood cancer are defined and detailed. The interactions with immune cells relevant to immunotherapy against cancer are considered and expounded, followed by speculation of potential regulatory roles of mesenchymal stromal cells (MSCs) in this complex network. Finally, a perspective is presented as to how insights from these complex interactions between matrices, blood cancer cells, immune cells, and MSCs can be leveraged to influence and engineer the treatment of blood cancers in the clinic.
Collapse
Affiliation(s)
- Sing Wan Wong
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Stephen Lenzini
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Jae-Won Shin
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA and Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
25
|
Li YR, Yang WX. Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget 2018; 7:46785-46812. [PMID: 27121062 PMCID: PMC5216836 DOI: 10.18632/oncotarget.8800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Myosin is a kind of actin-based motor protein. As the crucial functions of myosin during tumorigenesis have become increasingly apparent, the profile of myosin in the field of cancer research has also been growing. Eighteen distinct classes of myosins have been discovered in the past twenty years and constitute a diverse superfamily. Various myosins share similar structures. They all convert energy from ATP hydrolysis to exert mechanical stress upon interactions with microfilaments. Ongoing research is increasingly suggesting that at least seven kinds of myosins participate in the formation and development of cancer. Myosins play essential roles in cytokinesis failure, chromosomal and centrosomal amplification, multipolar spindle formation and DNA microsatellite instability. These are all prerequisites of tumor formation. Subsequently, myosins activate various processes of tumor invasion and metastasis development including cell migration, adhesion, protrusion formation, loss of cell polarity and suppression of apoptosis. In this review, we summarize the current understanding of the roles of myosins during tumorigenesis and discuss the factors and mechanisms which may regulate myosins in tumor progression. Furthermore, we put forward a completely new concept of “chromomyosin” to demonstrate the pivotal functions of myosins during karyokinesis and how this acts to optimize the functions of the members of the myosin superfamily.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Gossai NP, Gordon PM. The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2017; 5:90. [PMID: 28491865 PMCID: PMC5405081 DOI: 10.3389/fped.2017.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. While survival rates for ALL have improved, central nervous system (CNS) relapse remains a significant cause of treatment failure and treatment-related morbidity. Accordingly, there is a need to identify more efficacious and less toxic CNS-directed leukemia therapies. Extensive research has demonstrated a critical role of the bone marrow (BM) microenvironment in leukemia development, maintenance, and chemoresistance. Moreover, therapies to disrupt mechanisms of BM microenvironment-mediated leukemia survival and chemoresistance represent new, promising approaches to cancer therapy. However, in direct contrast to the extensive knowledge of the BM microenvironment, the unique attributes of the CNS microenvironment that serve to make it a leukemia reservoir are not yet elucidated. Recent work has begun to define both the mechanisms by which leukemia cells migrate into the CNS and how components of the CNS influence leukemia biology to enhance survival, chemoresistance, and ultimately relapse. In addition to providing new insight into CNS relapse and leukemia biology, this area of investigation will potentially identify targetable mechanisms of leukemia chemoresistance and self-renewal unique to the CNS environment that will enhance both the durability and quality of the cure for ALL patients.
Collapse
Affiliation(s)
- Nathan P Gossai
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Peter M Gordon
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|