1
|
Paladhi A, Daripa S, Nath A, Hira SK. TLR7-Induced Mitochondrial Reactive Oxygen Species Production in Monocyte-derived Dendritic Cells Drives IL-12-Dependent NK Cell Activation and Enhances Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1255-1263. [PMID: 39240186 DOI: 10.4049/jimmunol.2400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Dendritic cell (DC)-based vaccines are promising immunotherapies for cancer. Although DC-based therapies are known to activate tumor-specific T cells, the interplay between DCs and NK cells in this setting is not fully understood. In this study, we demonstrated a novel TLR7/ mitochondrial reactive oxygen species (mROS)/IL-12 axis that drives potent NK cell responses against tumors. We showed that TLR7 activation by imiquimod in peripheral blood monocyte-derived CD11c+ DCs triggered mROS production, leading to enhanced IL-12 secretion and subsequent NK cell activation, as evidenced by increased IFN-γ production and tumor cell cytotoxicity. Notably, mROS neutralization abrogates NK cell-mediated tumor cell lysis, and TLR7-mediated DC activation of NK cells occurs independently of MyD88, suggesting involvement of the noncanonical NF-κB pathway. Our findings provide a rationale for targeting the TLR7/mROS/IL-12 axis to enhance the efficacy of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| | - Samrat Daripa
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| | - Arghya Nath
- ICMR-DHR-VRDL, Burdwan Medical College and Hospital, Bardhaman, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Bardhaman, India
| |
Collapse
|
2
|
PD-1 expression on mouse intratumoral NK cells and its effects on NK cell phenotype. iScience 2022; 25:105137. [PMID: 36185379 PMCID: PMC9523278 DOI: 10.1016/j.isci.2022.105137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023] Open
Abstract
Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo. NK cells from PD-1 deficient mice have a more mature phenotype Elimination of MHC-I-deficient cells is impaired in PD-1−/− mice PD-1 expression on NK cells is associated with surface expression of CXCR6 PD-1/PD-L1 interactions on NK cells may occur in cis
Collapse
|
3
|
Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83:86-98. [PMID: 34583856 PMCID: PMC8423992 DOI: 10.1016/j.humimm.2021.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed "cytokine storm", a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles' heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
5
|
Natural Killer-Dendritic Cell Interactions in Liver Cancer: Implications for Immunotherapy. Cancers (Basel) 2021; 13:cancers13092184. [PMID: 34062821 PMCID: PMC8124166 DOI: 10.3390/cancers13092184] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The reciprocal crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The Th-cell polarizing ability, cytokine-producing capacity, chemokine expression, and migration of DCs are regulated by activated NK cells. Conversely, the effector functions including lysis and cytokine production, proliferation, and migration of NK cells are influenced by close interactions with activated DCs. In this review, we explore the impact of DC–NK cell crosstalk and its therapeutic potential in immune control of liver malignances. Abstract Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.
Collapse
|
6
|
Soluble and Exosome-Bound α-Galactosylceramide Mediate Preferential Proliferation of Educated NK Cells with Increased Anti-Tumor Capacity. Cancers (Basel) 2021; 13:cancers13020298. [PMID: 33467442 PMCID: PMC7830699 DOI: 10.3390/cancers13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.
Collapse
|
7
|
Presence of donor-encoded centromeric KIR B content increases the risk of infectious mortality in recipients of myeloablative, T-cell deplete, HLA-matched HCT to treat AML. Bone Marrow Transplant 2020; 55:1975-1984. [PMID: 32203258 DOI: 10.1038/s41409-020-0858-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The reported influence of donor Killer-cell Immunoglobulin-like Receptor (KIR) genes on the outcomes of haematopoietic cell transplantation (HCT) are contradictory, in part due to diversity of disease, donor sources, era and conditioning regimens within and between different studies. Here, we describe the results of a retrospective clinical analysis establishing the effect of donor KIR motifs on the outcomes of 119 HLA-matched, unrelated donor HCT for adult acute myeloid leukaemia (AML) using myeloablative conditioning (MAC) in a predominantly T-cell deplete (TCD) cohort. We observed that HCT involving donors with at least one KIR B haplotype were more likely to result in non-relapse mortality (NRM) than HCT involving donors with two KIR A haplotypes (p = 0.019). Upon separation of KIR haplotypes into their centromeric (Cen) and telomeric (Tel) motif structures, we demonstrated that the Cen-B motif was largely responsible for this effect (p = 0.001). When the cause of NRM was investigated further, infection was the dominant cause of death (p = 0.006). No evidence correlating donor KIR B haplotype with relapse risk was observed. The results from this analysis confirm previous findings in the unrelated, TCD, MAC transplant setting and imply a protective role for donor-encoded Cen-A motifs against infection in allogeneic HCT recipients.
Collapse
|
8
|
Batyrova B, Luwaert F, Maravelia P, Miyabayashi Y, Vashist N, Stark JM, Soori SY, Tibbitt CA, Riese P, Coquet JM, Chambers BJ. PD-1 expression affects cytokine production by ILC2 and is influenced by peroxisome proliferator-activated receptor-γ. IMMUNITY INFLAMMATION AND DISEASE 2019; 8:8-23. [PMID: 31742928 PMCID: PMC7016838 DOI: 10.1002/iid3.279] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Introduction Innate lymphoid cells (ILCs) can provide early cytokine help against a variety of pathogens in the lungs and gastrointestinal tract. Type 2 ILC (ILC2) are comparable to T helper 2 cells found in the adaptive immune system, which secrete cytokines such as interleukin 5 (IL‐5) and IL‐13 and have been found to play roles in host defense against helminth infections and in allergic responses. Recent studies have identified that programmed cell death protein 1 (PD‐1) and peroxisome proliferator activated receptor‐γ (PPAR‐γ) are highly expressed by ILC2. We examined whether PD‐1 plays a role in ILC2 function and whether there was any connection between PD‐1 and PPAR‐γ Methods To ensure that only innate immune cells were present, ILC2 cells were examined from RAG1−/− and PD‐1−/−xRAG1−/− mice under steady‐state or following inoculation with IL‐33. We also tested ILC2 generated from bone marrow of RAG1−/− and PD‐1−/−xRAG1−/− mice for their production of cytokines. These in vitro‐derived ILC2 were also exposed to agonist and antagonist of PPAR‐γ. Results We found that ILC2 from PD‐1−/−xRAG1−/− mice had reduced frequencies of IL‐5 and IL‐13 producing cells both in vitro upon IL‐33 stimulation and in vivo following intraperitoneal administration of IL‐33 when compared with ILC2 from RAG1−/− mice. However, by adding IL‐2, IL‐25, and thymic stromal lymphopoietin to the in vitro cultures, the frequency of IL‐5 and IL‐13 expressing ILC2 from PD‐1−/−xRAG1−/− mice became similar to the frequency observed for ILC2 from RAG1−/− mice. In addition, PPAR‐γ agonists and antagonists were found to increase and decrease PD‐1 expression on ILC2 respectively. Conclusions These findings illustrate that chronic loss of PD‐1 plays a role in ILC2 function and PD‐1 expression can be modulated by PPAR‐γ.
Collapse
Affiliation(s)
- Banu Batyrova
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fien Luwaert
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Panagiota Maravelia
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yuria Miyabayashi
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Neha Vashist
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Sara Y Soori
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Medicine, Centre for Infectious Medicine (CIM), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
9
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
10
|
TIGIT + iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018; 9:2858. [PMID: 30030423 PMCID: PMC6054648 DOI: 10.1038/s41467-018-05167-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-β, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs. Regulatory macrophages (Mreg) can directly suppress T effector cell responses. Here the authors show that human Mreg also elicit TIGIT+ regulatory T cells by integrating multiple differentiation signals, and that donor Mreg-induced recipient Tregs may promote kidney transplant acceptance in patients.
Collapse
|
11
|
Lam VC, Lanier LL. NK cells in host responses to viral infections. Curr Opin Immunol 2016; 44:43-51. [PMID: 27984782 DOI: 10.1016/j.coi.2016.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in viral clearance. NK cell responses to viral infections were originally believed to be non-specific and lacked immune memory recall responses. It is now appreciated that NK cell responses to viral infections can be specific and in some cases memory recall responses are established. Increasing evidence also illuminates the complexity of NK cell interactions with both innate and adaptive immune cells. Here, we summarize the evidence for NK cell-specific memory responses to viral infections and the intricate reciprocal interactions between NK cells and other immune cells that dictate their activation and effector functions.
Collapse
Affiliation(s)
- Viola C Lam
- Biomedical Sciences Graduate Program, San Francisco, CA 94143, United States; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, United States.
| |
Collapse
|