1
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
2
|
Kartikasari AER, Cassar E, Razqan MAM, Szydzik C, Huertas CS, Mitchell A, Plebanski M. Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Front Immunol 2022; 13:918254. [PMID: 36466914 PMCID: PMC9708892 DOI: 10.3389/fimmu.2022.918254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 08/18/2023] Open
Abstract
High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Emily Cassar
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Mohammed A. M. Razqan
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Crispin Szydzik
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
4
|
Baram T, Oren N, Erlichman N, Meshel T, Ben-Baruch A. Inflammation-Driven Regulation of PD-L1 and PD-L2, and Their Cross-Interactions with Protective Soluble TNFα Receptors in Human Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:3513. [PMID: 35884574 PMCID: PMC9323351 DOI: 10.3390/cancers14143513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Pro-inflammatory cytokines play key roles in elevating cancer progression in triple-negative breast cancer (TNBC). We demonstrate that specific combinations between TNFα, IL-1β and IFNγ up-regulated the proportion of human TNBC cells co-expressing the inhibitory immune checkpoints PD-L1 and PD-L2: TNFα + IL-1β in MDA-MB-231 cells and IFNγ + IL-1β in BT-549 cells; in the latter cells, the process depended entirely on STAT1 activation, with no involvement of p65 (CRISPR-Cas9 experiments). Highly significant associations between the pro-inflammatory cytokines and PD-L1/PD-L2 expression were revealed in the TCGA dataset of basal-like breast cancer patients. In parallel, we found that the pro-inflammatory cytokines regulated the expression of the soluble receptors of tumor necrosis factor α (TNFα), namely sTNFR1 and sTNFR2; moreover, we revealed that sTNFR1 and sTNFR2 serve as anti-metastatic and protective factors in TNBC, reducing the TNFα-induced production of inflammatory pro-metastatic chemokines (CXCL8, CXCL1, CCL5) by TNBC cells. Importantly, we found that in the context of inflammatory stimulation and also without exposure to pro-inflammatory cytokines, elevated levels of PD-L1 have down-regulated the production of anti-tumor sTNFR1 and sTNFR2. These findings suggest that in addition to its immune-suppressive activities, PD-L1 may promote disease course in TNBC by inhibiting the protective effects of sTNFR1 and sTNFR2.
Collapse
Affiliation(s)
| | | | | | | | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (T.B.); (N.O.); (N.E.); (T.M.)
| |
Collapse
|
5
|
Zhang X, Lao M, Xu J, Duan Y, Yang H, Li M, Ying H, He L, Sun K, Guo C, Chen W, Jiang H, Zhang X, Bai X, Liang T. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors. J Immunother Cancer 2022; 10:e003982. [PMID: 35260434 PMCID: PMC8906048 DOI: 10.1136/jitc-2021-003982] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS In advanced pancreatic ductal adenocarcinoma (PDAC), immune therapy, including immune checkpoint inhibitors, has limited efficacy, encouraging the study of combination therapy. METHODS Tumor necrosis factor receptor 2 (TNFR2) was analyzed via immunohistochemistry, immunofluorescence, western blotting, and ELISAs. The in vitro mechanism that TNFR2 regulates programmed cell death 1 ligand 1 (PD-L1) was investigated using immunofluorescence, immunohistochemistry, flow cytometry, western blotting, and chromatin immunoprecipitation (ChIP). In vivo efficacy and mechanistic studies, using C57BL/6 mice and nude mice with KPC cell-derived subcutaneous and orthotopic tumors, employed antibodies against TNFR2 and PD-L1. Survival curves were constructed for the orthotopic model and a genetically engineered PDAC model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre). Mass cytometry, immunohistochemistry, and flow cytometry analyzed local and systemic alterations in the immunophenotype. RESULTS TNFR2 showed high expression and is a prognostic factor in CD8+ T cell-enriched pancreatic cancer. TNFR2 promotes tumorigenesis and progression of pancreatic cancer via dual effect: suppressing cancer immunogenicity and partially accelerating tumor growth. TNFR2 positivity correlated with PD-L1, and in vitro and in vivo, it could regulate the expression of PDL1 at the transcription level via the p65 NF-κB pathway. Combining anti-TNFR2 and PD-L1 antibodies eradicated tumors, prolonged overall survival in pancreatic cancer, and induced strong antitumor immune memory and secondary prevention by reducing the infiltration of Tregs and tumor-associated macrophages and inducing CD8+ T cell activation in the PDAC microenvironment. Finally, the antitumor immune response derived from combination therapy is mainly dependent on CD8+ T cells, partially dependent on CD4+ T cells, and independent of natural killer cells. CONCLUSIONS Anti-TNFR2 and anti-PD-L1 combination therapy eradicated tumors by inhibiting their growth, relieving tumor immunosuppression, and generating robust memory recall.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Haitao Jiang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Almishri W, Swain LA, D'Mello C, Le TS, Urbanski SJ, Nguyen HH. ADAM Metalloproteinase Domain 17 Regulates Cholestasis-Associated Liver Injury and Sickness Behavior Development in Mice. Front Immunol 2022; 12:779119. [PMID: 35095853 PMCID: PMC8793775 DOI: 10.3389/fimmu.2021.779119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a ubiquitously expressed membrane-bound enzyme that mediates shedding of a wide variety of important regulators in inflammation including cytokines and adhesion molecules. Hepatic expression of numerous cytokines and adhesion molecules are increased in cholestatic liver diseases including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), however, the pathophysiological role of ADAM17 in regulating these conditions remains unknown. Therefore, we evaluated the role of ADAM17 in a mouse model of cholestatic liver injury due to bile duct ligation (BDL). We found that BDL enhanced hepatic ADAM17 protein expression, paralleled by increased ADAM17 bioactivity. Moreover, inhibition of ADAM17 bioactivity with the specific inhibitor DPC 333 significantly improved both biochemical and histological evidence of liver damage in BDL mice. Patients with cholestatic liver disease commonly experience adverse behavioral symptoms, termed sickness behaviors. Similarly, BDL in mice induces reproducible sickness behavior development, driven by the upregulated expression of cytokines and adhesion molecules that are in turn regulated by ADAM17 activity. Indeed, inhibition of ADAM17 activity significantly ameliorated BDL-associated sickness behavior development. In translational studies, we evaluated changes in ADAM17 protein expression in liver biopsies obtained from patients with PBC and PSC, compared to normal control livers. PSC and PBC patients demonstrated increased hepatic ADAM17 expression in hepatocytes, cholangiocytes and in association with liver-infiltrating immune cells compared to normal controls. In summary, cholestatic liver injury in mice and humans is associated with increased hepatic ADAM17 expression. Furthermore, inhibition of ADAM17 activity improves both cholestatic liver injury and associated sickness behavior development, suggesting that ADAM17 inhibition may represent a novel therapeutic approach for treating patients with PBC/PSC.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam A Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyson S Le
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan J Urbanski
- Department of Pathology & Laboratory Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henry H Nguyen
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
8
|
Fu Q, Shen Q, Tong J, Huang L, Cheng Y, Zhong W. Anti-Tumor Necrosis Factor Receptor 2 Antibody Combined With Anti-PD-L1 Therapy Exerts Robust Antitumor Effects in Breast Cancer. Front Cell Dev Biol 2021; 9:720472. [PMID: 34900985 PMCID: PMC8655985 DOI: 10.3389/fcell.2021.720472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a leading type of malignant tumor in women; however, the immunotherapy in breast cancer is still underappreciated. In this study, we demonstrated that tumor necrosis factor receptor 2 (TNFR2) is highly expressed in both breast tumor tissue and tumor-infiltrating immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs). We found that TNFR2 antagonistic antibody reduced Foxp3 expression and the proliferation of Tregs and impaired the inhibitory effect of Tregs on CD4+CD25– effector T (Teff) cells in a dose-dependent manner. The treatment of anti-TNFR2 antibody not only inhibited the proliferation of breast tumor cells in vitro but also suppressed the tumorigenesis of murine mammary carcinoma 4T1 cells in vivo. Mice recovered from tumor growth also developed 4T1-specific immunity. Furthermore, we demonstrated that anti-TNFR2 antibody in combination with anti-PD-L1 exhibited augmented antitumor effects than monotherapy. Anti-TNFR2 treatment also tended to increase the expression of proinflammatory cytokines in tumor tissues. In conclusion, our study suggests that TNFR2 antagonist could potentially offer a clinical benefit as a single agent or in combination with immune checkpoint blockade treatment for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Tong
- Department of Peripherally Inserted Central Catheter (PICC), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhong
- Department of Breast Cancer, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Okamori S, Ishii M, Asakura T, Suzuki S, Namkoong H, Kagawa S, Hegab AE, Yagi K, Kamata H, Kusumoto T, Ogawa T, Takahashi H, Yoda M, Horiuchi K, Hasegawa N, Fukunaga K. ADAM10 partially protects mice against influenza pneumonia by suppressing specific myeloid cell population. Am J Physiol Lung Cell Mol Physiol 2021; 321:L872-L884. [PMID: 34523355 DOI: 10.1152/ajplung.00619.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influenza virus infection poses a serious health threat worldwide. Myeloid cells play pivotal roles in regulating innate and adaptive immune defense. A disintegrin and metalloproteinase (ADAM) family of proteins contributes to various immune responses; however, the role of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) in influenza virus infection remains largely unknown. Herein, we investigated its role, focusing on myeloid cells, during influenza virus infection in mice. ADAM10 gene (Adam10)flox/flox/Lyz2-Cre (Adam10ΔLyz2) and control Adam10flox/flox mice were intranasally infected with 200 plaque-forming units of influenza virus A/H1N1/PR8/34. Adam10ΔLyz2 mice exhibited a significantly higher mortality rate, stronger lung inflammation, and a higher virus titer in the lungs than control mice. Macrophages and inflammatory cytokines, such as TNF-α, IL-1β, and CCL2, were increased in bronchoalveolar lavage fluid from Adam10ΔLyz2 mice following infection. CD11b+Ly6G-F4/80+ myeloid cells, which had an inflammatory monocyte/macrophage-like phenotype, were significantly increased in the lungs of Adam10ΔLyz2 mice. Adoptive transfer experiments suggested that these cells likely contributed to the poorer prognosis in Adam10ΔLyz2 mice. Seven days after infection, CD11b+Ly6G-F4/80+ lung cells exhibited significantly higher arginase-1 expression levels in Adam10ΔLyz2 mice than in control mice, whereas an arginase-1 inhibitor improved the prognosis of Adam10ΔLyz2 mice. Enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF)/GM-CSF receptor signaling likely contributed to this process. Collectively, these results indicate that myeloid ADAM10 protects against influenza virus pneumonia and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Medical Education Center, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takunori Ogawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Yoda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defence Medical College, Saitama, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
11
|
Tan Y, Zhang W, Zhu Z, Qiao N, Ling Y, Guo M, Yin T, Fang H, Xu X, Lu G, Zhang P, Yang S, Fu Z, Liang D, Xie Y, Zhang R, Jiang L, Yu S, Lu J, Jiang F, Chen J, Xiao C, Wang S, Chen S, Bian XW, Lu H, Liu F, Chen S. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021; 7:42. [PMID: 34103487 PMCID: PMC8185699 DOI: 10.1038/s41421-021-00274-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of coronavirus disease 19 (COVID-19) involves a multitude of host responses, yet how they unfold during the course of disease progression remains unclear. Here, through integrative analysis of clinical laboratory tests, targeted proteomes, and transcriptomes of 963 patients in Shanghai, we delineate the dynamics of multiple circulatory factors within the first 30 days post-illness onset and during convalescence. We show that hypercortisolemia represents one of the probable causes of acute lymphocytopenia at the onset of severe/critical conditions. Comparison of the transcriptomes of the bronchoalveolar microenvironment and peripheral blood indicates alveolar macrophages, alveolar epithelial cells, and monocytes in lungs as the potential main sources of elevated cytokines mediating systemic immune responses and organ damages. In addition, the transcriptomes of patient blood cells are characterized by distinct gene regulatory networks and alternative splicing events. Our study provides a panorama of the host responses in COVID-19, which may serve as the basis for developing further diagnostics and therapy.
Collapse
Affiliation(s)
- Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingquan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peipei Zhang
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, The First Affritted Hospital of USTC, Hefei, Anhui, China
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongguo Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuting Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangying Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Key Laboratory of the Ministry of Education, Chongqing, China.
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
13
|
Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes. Biosci Rep 2021; 41:228464. [PMID: 33904577 PMCID: PMC8128101 DOI: 10.1042/bsr20210029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we focus specifically on the role that the metalloproteinase, A Disintegrin and Metalloproteinase 17 [ADAM17] plays in the development and progression of the metabolic syndrome. There is a well-recognised link between the ADAM17 substrate tumour necrosis factor α (TNF-α) and obesity, inflammation and diabetes. In addition, knocking out ADAM17 in mice leads to an extremely lean phenotype. Importantly, ADAM17-deficient mice exhibit one of the most pronounced examples of hypermetabolism in rodents to date. It is vital to further understand the mechanistic role that ADAM17 plays in the metabolic syndrome. Such studies will demonstrate that ADAM17 is a valuable therapeutic target to treat obesity and diabetes.
Collapse
|
14
|
Pillai JA, Bebek G, Khrestian M, Bena J, Bergmann CC, Bush WS, Leverenz JB, Bekris LM. TNFRSF1B Gene Variants and Related Soluble TNFR2 Levels Impact Resilience in Alzheimer's Disease. Front Aging Neurosci 2021; 13:638922. [PMID: 33716716 PMCID: PMC7947258 DOI: 10.3389/fnagi.2021.638922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) promotes neuronal survival downstream. This longitudinal study evaluated whether the TNFRSF1B gene encoding TNFR2 and levels of its soluble form (sTNFR2) affect Alzheimer disease (AD) biomarkers and clinical outcomes. Data analyzed included 188 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had mild cognitive impairment (MCI) and AD dementia. Further, a replication study was performed in 48 patients with MCI with positive AD biomarkers who were treated at a memory clinic. Cerebrospinal fluid (CSF) sTNFR2 levels along with two related TNFRSF1B gene single nucleotide polymorphisms (SNPs) rs976881 and rs1061622 were assessed. General linear models were used to evaluate the effect of CSF sTNFR2 levels and each SNP in relationship to CSF t-tau and p-tau, cognitive domains, MRI brain measures, and longitudinal cognitive changes after adjustments were made for covariates such as APOE ε4 status. In the ADNI cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF t-tau and p-tau levels; hippocampal and whole brain volumes; and Digit Span Forwards subtest scores. In the replication cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF p-tau. A significant interaction between rs976881 and CSF sTNFR2 also impacts Clinical Dementia Rating Sum of Boxes scores over 12 months in the ADNI cohort. The interaction between TNFRSF1B variant rs976881 and CSF sTNFR2 levels was noted to modulate multiple AD-associated severity markers and cognitive domains. This interaction impacts resilience-related clinical outcomes in AD and lends support to sTNFR2 as a promising candidate for therapeutic targeting to improve clinical outcomes of interest.
Collapse
Affiliation(s)
- Jagan A. Pillai
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, United States
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Maria Khrestian
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - James Bena
- Department of Quantitative Health Science, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Cornelia C. Bergmann
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - James B. Leverenz
- Department of Neurology, Cleveland Clinic, Cleveland, OH, United States
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, United States
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lynn M. Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
15
|
Aljohmani A, Yildiz D. A Disintegrin and Metalloproteinase-Control Elements in Infectious Diseases. Front Cardiovasc Med 2020; 7:608281. [PMID: 33392273 PMCID: PMC7772189 DOI: 10.3389/fcvm.2020.608281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in treatment strategies, infectious diseases are still under the leading causes of death worldwide. Although the activation of the inflammatory cascade is one prerequisite of defense, persistent and exuberant immune response, however, may lead to chronicity of inflammation predisposing to a temporal or permanent tissue damage not only of the site of infection but also among different body organs. The initial response to invading pathogens is mediated by the recognition through various pattern-recognition receptors along with cellular engulfment resulting in a coordinated release of soluble effector molecules and cytokines aiming to terminate the external stimuli. Members of the ‘a disintegrin and metalloproteinase’ (ADAM) family have the capability to proteolytically cleave transmembrane molecules close to the plasma membrane, a process called ectodomain shedding. In fact, in infectious diseases dysregulation of numerous ADAM substrates such as junction molecules (e.g., E-cadherin, VE-cadherin, JAM-A), adhesion molecules (e.g., ICAM-1, VCAM-1, L-selectin), and chemokines and cytokines (e.g., CXCL16, TNF-α) has been observed. The alpha-cleavage by ADAM proteases represents a rate limiting step for downstream regulated intramembrane proteolysis (RIPing) of several substrates, which influence cellular differentiation, cell signaling pathways and immune modulation. Both the substrates mentioned above and RIPing crucially contribute to a systematic damage in cardiovascular, endocrine, and/or gastrointestinal systems. This review will summarize the current knowledge of ADAM function and the subsequent RIPing in infectious diseases (e.g., pathogen recognition and clearance) and discuss the potential long-term effect on pathophysiological changes such as cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| |
Collapse
|
16
|
Tam EM, Fulton RB, Sampson JF, Muda M, Camblin A, Richards J, Koshkaryev A, Tang J, Kurella V, Jiao Y, Xu L, Zhang K, Kohli N, Luus L, Hutto E, Kumar S, Lulo J, Paragas V, Wong C, Suchy J, Grabow S, Dugast AS, Zhang H, Depis F, Feau S, Jakubowski A, Qiao W, Craig G, Razlog M, Qiu J, Zhou Y, Marks JD, Croft M, Drummond DC, Raue A. Antibody-mediated targeting of TNFR2 activates CD8+ T cells in mice and promotes antitumor immunity. Sci Transl Med 2019; 11:11/512/eaax0720. [DOI: 10.1126/scitranslmed.aax0720] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is the alternate receptor for TNF and can mediate both pro- and anti-inflammatory activities of T cells. Although TNFR2 has been linked to enhanced suppressive activity of regulatory T cells (Tregs) in autoimmune diseases, the viability of TNFR2 as a target for cancer immunotherapy has been underappreciated. Here, we show that new murine monoclonal anti-TNFR2 antibodies yield robust antitumor activity and durable protective memory in multiple mouse cancer cell line models. The antibodies mediate potent Fc-dependent T cell costimulation and do not result in significant depletion of Tregs. Corresponding human agonistic monoclonal anti-TNFR2 antibodies were identified and also had antitumor effects in humanized mouse models. Anti-TNFR2 antibodies could be developed as a novel treatment option for patients with cancer.
Collapse
|
17
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Aberrant frequency of TNFR2 + Treg and related cytokines in patients with CIN and cervical cancer. Oncotarget 2017; 9:5073-5083. [PMID: 29435163 PMCID: PMC5797034 DOI: 10.18632/oncotarget.23581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023] Open
Abstract
Regulatory T (Treg) cells expressing tumor necrosis factor receptor 2 (TNFR2) are highly suppressive and are associated with immune homeostasis in various diseases. However, the role of TNFR2+Treg subset and relevant cytokines in the development of cervical cancer (CC) remained unclear. In this study, 72 patients with CC, 30 patients with cervical intraepithelial neoplasia (CIN) and 30 healthy volunteers were enrolled. The level of circulating TNFR2+Tregs was investigated through flow cytometry. The plasma concentrations of soluble TNFR1 (s-TNFR1) and soluble TNFR2 (s-TNFR2) were determined by enzyme-linked immunosorbent assay. In addition, the mRNA expression levels of TNF-α, TNFR1, TNFR2, and Foxp3 were measured using real-time polymerase chain reaction. Results showed that both peripheral and tumor infiltrating TNFR2+Tregs significantly increased in patients with CIN and CC and levels of circulating s-TNFR1 and s-TNFR2 increased in patients with CC. Moreover, the percentage of peripheral TNFR2+Tregs was inversely correlated with the clinical stages of CC. Furthermore, the mRNA expression levels of TNF-α, TNFR2, and Foxp3 increased in patients with CIN and CC. Overall, these results indicate that TNFR2+Tregs and relevant cytokines contribute to CC development and are promising targets in future immunotherapeutic approaches.
Collapse
|
19
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
The role of ADAM17 in the T-cell response against bacterial pathogens. PLoS One 2017; 12:e0184320. [PMID: 28877252 PMCID: PMC5587322 DOI: 10.1371/journal.pone.0184320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM17 is a member of the A Disintegrin And Metalloproteinase family of proteases. It is ubiquitously expressed and causes the shedding of a broad spectrum of surface proteins such as adhesion molecules, cytokines and cytokine receptors. By controlled shedding of these proteins from leukocytes, ADAM17 is able to regulate immune responses. Several ADAM17 targets on T cells have been implicated in T-cell migration, differentiation and effector functions. However, the role of ADAM17 in T-cell responses is still unclear. To characterize the function of ADAM17 in T cells, we used Adam17fl/fl×CD4cre+ mice with a T-cell restricted inactivation of the Adam17 gene. Upon stimulation, ADAM17-deficient CD4+ and CD8+ T cells were impaired in shedding of CD62L, IL-6Rα, TNF-α, TNFRI and TNFRII. Surprisingly, we could not detect profound changes in the composition of major T-cell subsets in Adam17fl/fl×CD4cre+ mice. Following infection with Listeria monocytogenes, Adam17fl/fl×CD4cre+ mice mounted regular listeria-specific CD4+ TH1 and CD8+ T-cell responses and were able to control primary and secondary infections. In conclusion, our study indicates that ADAM17 is either not required in T cells under homoeostatic conditions and for control of listeria infection or can be effectively compensated by other mechanisms.
Collapse
|
21
|
DeBerge M, Yeap XY, Dehn S, Zhang S, Grigoryeva L, Misener S, Procissi D, Zhou X, Lee DC, Muller WA, Luo X, Rothlin C, Tabas I, Thorp EB. MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circ Res 2017; 121:930-940. [PMID: 28851810 DOI: 10.1161/circresaha.117.311327] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Clinical benefits of reperfusion after myocardial infarction are offset by maladaptive innate immune cell function, and therapeutic interventions are lacking. OBJECTIVE We sought to test the significance of phagocytic clearance by resident and recruited phagocytes after myocardial ischemia reperfusion. METHODS AND RESULTS In humans, we discovered that clinical reperfusion after myocardial infarction led to significant elevation of the soluble form of MerTK (myeloid-epithelial-reproductive tyrosine kinase; ie, soluble MER), a critical biomarker of compromised phagocytosis by innate macrophages. In reperfused mice, macrophage Mertk deficiency led to decreased cardiac wound debridement, increased infarct size, and depressed cardiac function, newly implicating MerTK in cardiac repair after myocardial ischemia reperfusion. More notably, Mertk(CR) mice, which are resistant to cleavage, showed significantly reduced infarct sizes and improved systolic function. In contrast to other cardiac phagocyte subsets, resident cardiac MHCIILOCCR2- (major histocompatibility complex II/C-C motif chemokine receptor type 2) macrophages expressed higher levels of MerTK and, when exposed to apoptotic cells, secreted proreparative cytokines, including transforming growth factor-β. Mertk deficiency compromised the accumulation of MHCIILO phagocytes, and this was rescued in Mertk(CR) mice. Interestingly, blockade of CCR2-dependent monocyte infiltration into the heart reduced soluble MER levels post-ischemia reperfusion. CONCLUSIONS Our data implicate monocyte-induced MerTK cleavage on proreparative MHCIILO cardiac macrophages as a novel contributor and therapeutic target of reperfusion injury.
Collapse
Affiliation(s)
- Matthew DeBerge
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xin Yi Yeap
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Shirley Dehn
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Shuang Zhang
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Lubov Grigoryeva
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Sol Misener
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Daniel Procissi
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xin Zhou
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Daniel C Lee
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - William A Muller
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Xunrong Luo
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Carla Rothlin
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Ira Tabas
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.)
| | - Edward B Thorp
- From the Department of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (M.D., X.Y.Y., S.D., S.Z., L.G., S.M., D.P., X.Z., D.C.Le., W.A.M., X.L., E.B.T.); Division of Molecular Medicine at Columbia University, New York (I.T.); and Department of Immunobiology, School of Medicine, Yale University (C.R.).
| |
Collapse
|
22
|
Tasaki S, Suzuki K, Nishikawa A, Kassai Y, Takiguchi M, Kurisu R, Okuzono Y, Miyazaki T, Takeshita M, Yoshimoto K, Yasuoka H, Yamaoka K, Ikeura K, Tsunoda K, Morita R, Yoshimura A, Toyoshiba H, Takeuchi T. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome. Ann Rheum Dis 2017; 76:1458-1466. [PMID: 28522454 PMCID: PMC5738597 DOI: 10.1136/annrheumdis-2016-210788] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Multiomics study was conducted to elucidate the crucial molecular mechanisms of primary Sjögren's syndrome (SS) pathology. METHODS We generated multiple data set from well-defined patients with SS, which includes whole-blood transcriptomes, serum proteomes and peripheral immunophenotyping. Based on our newly generated data, we performed an extensive bioinformatic investigation. RESULTS Our integrative analysis identified SS gene signatures (SGS) dysregulated in widespread omics layers, including epigenomes, mRNAs and proteins. SGS predominantly involved the interferon signature and ADAMs substrates. Besides, SGS was significantly overlapped with SS-causing genes indicated by a genome-wide association study and expression trait loci analyses. Combining the molecular signatures with immunophenotypic profiles revealed that cytotoxic CD8 -T cells- were associated with SGS. Further, we observed the activation of SGS in cytotoxic CD8 T cells isolated from patients with SS. CONCLUSIONS Our multiomics investigation identified gene signatures deeply associated with SS pathology and showed the involvement of cytotoxic CD8 T cells. These integrative relations across multiple layers will facilitate our understanding of SS at the system level.
Collapse
Affiliation(s)
- Shinya Tasaki
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
- Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ayumi Nishikawa
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshiaki Kassai
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
| | - Maiko Takiguchi
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
| | - Rina Kurisu
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
| | - Takahiro Miyazaki
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
- Nektar Therapeutics, San Francisco, California, USA
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kunihiro Yamaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Ikeura
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuyuki Tsunoda
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyoshi Toyoshiba
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|