1
|
Zhu Z, Guo Z, Gao X, Chen Y, Huang J, Li L, Sun B. Stomatin promotes neutrophil degranulation and vascular leakage in the early stage after severe burn via enhancement of the intracellular binding of neutrophil primary granules to F-actin. Burns 2024; 50:653-665. [PMID: 38185615 DOI: 10.1016/j.burns.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The pathophysiology of severe burn injuries in the early stages involves complex emergency responses, inflammatory reactions, immune system activation, and a significant increase in vascular permeability. Neutrophils, crucial innate immune cells, undergo rapid mobilization and intricate pathophysiological changes during this period. However, the dynamic alterations and detailed mechanisms governing their biological behavior remain unclear. Stomatin protein, an essential component of the cell membrane, stabilizes and regulates the membrane and participates in cell signal transduction. Additionally, it exhibits elevated expression in various inflammatory diseases. While Stomatin expression has been observed in the cell and granule membranes of neutrophils, its potential involvement in post-activation functional regulation requires further investigation. METHODS Neutrophils were isolated from human peripheral blood, mouse peripheral blood, and mouse bone marrow using the magnetic bead separation method. Flow cytometry was used to assess neutrophil membrane surface markers, ROS levels, and phagocytic activity. The expression of the Stomatin gene and protein was examined using quantitative real-time polymerase chain reaction and western blotting methods, respectively. Furthermore, the enzyme-linked immunosorbent assay was used to evaluate the expression of neutrophil-derived inflammatory mediators (myeloperoxidase (MPO), neutrophil elastase (NE), and matrix metalloproteinase 9 (MMP9)) in the plasma. Images and videos of vascular leakage in mice were captured using in vivo laser confocal imaging technology, whereas in vitro confocal microscopy was used to study the localization and levels of the cytoskeleton, CD63, and Stomatin protein in neutrophils. RESULTS This study made the following key findings: (1) Early after severe burn, neutrophil dysfunction is present in the peripheral blood characterized by significant bone marrow mobilization, excessive degranulation, and impaired release and chemotaxis of inflammatory mediators (MPO, NE, and MMP9). (2) After burn injury, expression of both the stomatin gene and protein in neutrophils was upregulated. (3) Knockout (KO) of the stomatin gene in mice partially inhibited neutrophil excessive degranulation, potentially achieved via reduced production of primary granules and weakened binding of primary granules to the cell skeleton protein F-actin. (4) In severely burned mice, injury led to notable early-stage vascular leakage and lung damage, whereas Stomatin gene KO significantly ameliorated lung injury and vascular leakage. CONCLUSIONS Stomatin promotes neutrophil degranulation in the early stage of severe burn injury via increasing the production of primary granules and enhancing their binding to the cell skeleton protein F-actin in neutrophils. Consequently, this excessive degranulation results in aggravated vascular leakage and lung injury.
Collapse
Affiliation(s)
- Zhechen Zhu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China; Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zaiwen Guo
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xi Gao
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yi Chen
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiamin Huang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Yan K, Meng Q, He H, Zhu H, Wang Z, Han L, Huang Q, Zhang Z, Yawalkar N, Zhou H, Xu J. iTRAQ-based quantitative proteomics reveals biomarkers/pathways in psoriasis that can predict the efficacy of methotrexate. J Eur Acad Dermatol Venereol 2022; 36:1784-1795. [PMID: 35666151 DOI: 10.1111/jdv.18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methotrexate (MTX) is the first-line medicine to treat psoriasis. So far, there has been less research on protein biomarkers to predict its efficacy by the proteomic technique. OBJECTIVES To evaluate differentially expressed proteins in peripheral mononuclear cells (PBMCs) between good responders (GRs) and non-responders (NRs) after MTX treatment, compared with normal controls (NCs). METHODS We quantified protein expression of PBMCs with 4 GRs and 4 NRs to MTX and 4 NCs by isobaric tags for relative and absolute quantification (iTRAQ), analyzing and identifying proteins related to efficacy of MTX in 18 psoriatic patients. RESULTS A total of 3,177 proteins had quantitative information, and 403 differentially expressed proteins (fold change ≥ 1.2, p < .05) were identified. Compared to NCs, upregulated proteins (ANXA6, RPS27A, EZR, XRCC6), participating in the activation of NF-κB, the JAK-STAT pathway, and neutrophil degranulation were detected in GRs. The proteins (GPV, FN1, STOM), involving platelet activation, signaling and aggregation as well as neutrophil degranulation were significantly downregulated in GRs. These proteins returned to normal levels after MTX treatment. Furthermore, Western blotting identified the expression of ANXA6 and STAT1 in PBMCs, which were significantly downregulated in GRs, but not in NRs. CONCLUSIONS We identified seven differentially expressed and regulated proteins (ANXA6, GPV, FN1, XRCC6, STOM, RPS27A, and EZR) as biomarkers to predict MTX efficacy in NF-κB signaling, JAK-STAT pathways, neutrophil degranulation, platelet activation, signaling and aggregation.
Collapse
Affiliation(s)
- Kexiang Yan
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qian Meng
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han He
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongwen Zhu
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhicheng Wang
- Department of Clinical Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Han
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhenghua Zhang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinhua Xu
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
3
|
Skryabin GO, Komelkov AV, Galetsky SA, Bagrov DV, Evtushenko EG, Nikishin II, Zhordaniia KI, Savelyeva EE, Akselrod ME, Paianidi IG, Tchevkina EM. Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker. J Cell Biochem 2020; 122:100-115. [PMID: 32951259 DOI: 10.1002/jcb.29834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/13/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin-1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non-small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin-1 and flotillin-2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin-1 as well as its EV-to-cellular ratio vary drastically depending on cell type.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Andrei V Komelkov
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Sergey A Galetsky
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Dmitry V Bagrov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeniy G Evtushenko
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Nikishin
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill I Zhordaniia
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Elizaveta E Savelyeva
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maria E Akselrod
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Iulia G Paianidi
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Elena M Tchevkina
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
4
|
Lee JH, Hsieh CF, Liu HW, Chen CY, Wu SC, Chen TW, Hsu CS, Liao YH, Yang CY, Shyu JF, Fischer WB, Lin CH. Lipid raft-associated stomatin enhances cell fusion. FASEB J 2016; 31:47-59. [PMID: 27663861 DOI: 10.1096/fj.201600643r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023]
Abstract
Membrane fusions that occur during vesicle transport, virus infection, and tissue development, involve receptors that mediate membrane contact and initiate fusion and effectors that execute membrane reorganization and fusion pore formation. Some of these fusogenic receptors/effectors are preferentially recruited to lipid raft membrane microdomains. Therefore, major constituents of lipid rafts, such as stomatin, may be involved in the regulation of cell-cell fusion. Stomatin produced in cells can be released to the extracellular environment, either through protein refolding to pass across lipid bilayer or through exosome trafficking. We report that cells expressing more stomatin or exposed to exogenous stomatin are more prone to undergoing cell fusion. During osteoclastogenesis, depletion of stomatin inhibited cell fusion but had little effect on tartrate-resistant acid phosphatase production. Moreover, in stomatin transgenic mice, increased cell fusion leading to enhanced bone resorption and subsequent osteoporosis were observed. With its unique molecular topology, stomatin forms molecular assembly within lipid rafts or on the appositional plasma membranes, and promotes membrane fusion by modulating fusogenic protein engagement.-Lee, J.-H., Hsieh, C.-F., Liu, H.-W., Chen, C.-Y., Wu, S.-C., Chen, T.-W., Hsu, C.-S., Liao, Y.-H., Yang, C.-Y., Shyu, J.-F., Fischer, W. B., Lin, C.-H. Lipid raft-associated stomatin enhances cell fusion.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology.,Institute of Biochemistry and Molecular Biology
| | | | - Hong-Wen Liu
- Institute of Microbiology and Immunology.,Chong Hin Loon Memorial Cancer and Biotherapy Research Center, and
| | - Chin-Yau Chen
- Institute of Microbiology and Immunology.,Department of Surgery, I-Lan, Taiwan
| | - Shao-Chin Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Wei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | | | - Yu-Hsiu Liao
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; and
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; .,Institute of Microbiology and Immunology.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
5
|
Follin P, Dahlgren C. A skin chamber technique as a human model for studies of aseptic inflammatory reactions. Methods Mol Biol 2007; 412:333-346. [PMID: 18453122 DOI: 10.1007/978-1-59745-467-4_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using a combination of induced skin blistering and collection chambers permits dynamic studies of the aseptic inflammatory reaction in humans. Blisters filled with interstitial fluid can be generated by applying negative pressure to normal skin for up to 2 h. The blisters are subsequently denuded to form superficial "skin windows" that are well defined with regard to area and depth. The denuded areas are covered with a separate collection chamber filled with a suitable medium and left for 18-24 h. During this period, neutrophils and inflammatory agents accumulate in the chamber medium, and sequential events in the inflammatory process can be studied by repeated sampling. Inactive medium or isolated peripheral blood cells from the same individual can be used as controls for both cellular functions and the pro-/anti-inflammatory mediators that are generated or released.
Collapse
Affiliation(s)
- Per Follin
- Department of Infectious Diseases, University Hospital, Linköping, Sweden
| | | |
Collapse
|