1
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
2
|
Zhuo X, Bu H, Hu K, Si Z, Chen L, Chen Y, Yang L, Jiang Y, Xu Y, Zhao P, Ma X, Tao S, Zhu Q, Cui L, Sun H, Cui Y. Differences in the reaction of hyperlipidemia on different endothelial progenitor cells based on sex. Biomed Rep 2021; 15:64. [PMID: 34155448 PMCID: PMC8212447 DOI: 10.3892/br.2021.1440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
The sex of a patient can affect the outcomes of several cardiovascular diseases, and men generally tend to experience earlier episodes of cardiovascular diseases compared with women. The progression of atherosclerosis during hyperlipidemia can be induced by reactive oxygen species (ROS) and oxidized-low-density lipoprotein (ox-LDL). By contrast, bone marrow (BM)-derived endothelial progenitor cells (EPCs) have been reported to serve a protective role against atherosclerosis. The aim of the present was to compare the effects of sex under conditions of hyperlipidemia on different populations of EPCs, and to identify the potential underlying mechanisms. EPC numbers and ROS levels in the blood and BM were measured using fluorescence activated cell sorting in male and female LDL receptor knock-out C57BL/6 mice maintained on a high-fat diet for 6 months, and in male and female wild type C57BL/6 mice following ox-LDL injection for 3 days. Female hyperlipidemic mice exhibited lower levels of plasma lipids, atherosclerotic plaque formation, intracellular EPC ROS formation and inflammatory cytokine levels. Furthermore, BM CD34+/ fetal liver kinase-1 (Flk-1+), CD34+/CD133+ and stem cell antigen-1+/Flk-1+, as well as all circulating EPCs, were maintained at higher levels in female hyperlipidemic mice. In addition, similar changes with regards to BM CD34+/Flk-1+, CD34+/CD133+, c-Kit+/CD31+ and circulating CD34+/Flk1+ and CD34+/CD133+ EPCs were observed in female mice following ox-LDL treatment. These sustained higher levels of BM and circulating EPCs in female mice with hyperlipidemia may be associated with reduced levels of ox-LDL as a result of reduced intracellular ROS formation in EPCs and decreased inflammatory cytokine production.
Collapse
Affiliation(s)
- Xiaoqing Zhuo
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250118, P.R. China
| | - Haoran Bu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ke Hu
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhihua Si
- Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yufan Jiang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yixin Xu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shufei Tao
- Ross University School of Medicine, Barbados 60515, Barbados
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Chong KC, Owens CD, Park M, Alley HF, Boscardin WJ, Conte MS, Gasper WJ, Grenon SM. Relationship between kidney disease and endothelial function in peripheral artery disease. J Vasc Surg 2014; 60:1605-11. [PMID: 25441679 DOI: 10.1016/j.jvs.2014.08.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We have previously shown that peripheral artery disease (PAD) is associated with marked impairment of endothelial function (EF). Given that poor EF is associated with functional status of PAD patients as well as with increased morbidity and mortality in patients undergoing vascular procedures, determination of factors associated with poor EF in a PAD cohort is important. We hypothesized that decreased kidney function is associated with impaired EF in patients with PAD. METHODS This was a cross-sectional study of PAD patients presenting to a vascular surgery outpatient clinic at the San Francisco Veterans Affairs Medical Center including patients enrolled in the OMEGA-PAD I trial (NCT01310270) and the OMEGA-PAD Cohort. Brachial artery flow-mediated vasodilation was performed to assess EF. Kidney function was characterized by estimated glomerular filtration rate with the abbreviated Modification of Diet in Renal Disease formula. Linear regression was performed to assess the relationship between EF and kidney function in claudicants. RESULTS Ninety-seven patients with intermittent claudication participated in this study. Mean age was 69 ± 8 years, 97% were male, and 79% were white. Comorbidities included hypertension (91%), dyslipidemia (87%), coronary artery disease (42%), and diabetes mellitus (38%). Mean ankle-brachial index was 0.73 ± 0.14 and mean flow-mediated vasodilation was 7.0% ± 3.8%, indicating impaired EF. Linear regression showed an association between kidney function and EF (by 10 mL/min/1.73 m(2); β, 0.12; confidence interval, 0.05-0.20; P = .001). After multivariable regression adjusting for age, race, log tumor necrosis factor α, hypertension, dyslipidemia, and diabetes, estimated glomerular filtration rate remained significantly associated with EF (P = .033). CONCLUSIONS In patients with PAD, decreased kidney function is associated with endothelial dysfunction. Further longitudinal studies are needed to better understand the impact of kidney function on PAD progression and the role of endothelial dysfunction in this process.
Collapse
Affiliation(s)
- Karen C Chong
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif; VIPERx Laboratory, University of California, San Francisco, Calif
| | - Christopher D Owens
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif; VIPERx Laboratory, University of California, San Francisco, Calif; Division of Vascular Surgery, Veterans Affairs Medical Center, San Francisco, Calif
| | - Meyeon Park
- Department of Nephrology, University of California, San Francisco, Calif
| | - Hugh F Alley
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif; VIPERx Laboratory, University of California, San Francisco, Calif
| | - W John Boscardin
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, Calif
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif
| | - Warren J Gasper
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif; VIPERx Laboratory, University of California, San Francisco, Calif; Division of Vascular Surgery, Veterans Affairs Medical Center, San Francisco, Calif
| | - S Marlene Grenon
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, Calif; VIPERx Laboratory, University of California, San Francisco, Calif; Division of Vascular Surgery, Veterans Affairs Medical Center, San Francisco, Calif.
| |
Collapse
|
4
|
Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal 2011; 15:933-48. [PMID: 20712407 PMCID: PMC3135185 DOI: 10.1089/ars.2010.3502] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022]
Abstract
Endothelial injury and dysfunction are critical events in the pathogenesis of cardiovascular disease. During these processes, an impaired balance of nitric oxide bioavailability and oxidative stress is mechanistically involved. Circulating angiogenic cells (including early and late outgrowth endothelial progenitor cells (EPC)) contribute to formation of new blood vessels, neovascularization, and homeostasis of the vasculature, and are highly sensitive for misbalance between NO and oxidative stress. We here review the role of the endothelial nitric oxide synthase and oxidative stress producing enzyme systems in EPC during cardiovascular disease. We also focus on the underlying molecular mechanisms and potential emerging drug- and gene-based therapeutic strategies to improve EPC function in cardiovascular diseased patients.
Collapse
Affiliation(s)
- Felix Fleissner
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Chade AR, Zhu XY, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells 2010; 28:1039-47. [PMID: 20506499 DOI: 10.1002/stem.426] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue injury triggers reparative processes that often involve endothelial progenitor cells (EPCs) recruitment. We hypothesized that atherosclerotic renal artery stenosis (ARAS) activates homing signals that would be detectable in both the kidney and EPCs, and attenuated on renal repair using selective cell-based therapy. Pigs were treated with intrarenal autologous EPC after 6 weeks of ARAS. Four weeks later, expression of homing-related signals in EPC and kidney, single kidney function, microvascular (MV) density, and morphology were compared with untreated ARAS and normal control pigs (n = 7 each). Compared with normal EPC, EPC from ARAS pigs showed increased stromal cell-derived factor (SDF)-1, angiopoietin-1, Tie-2, and c-kit expression, but downregulation of erythropoietin (EPO) and its receptor. The ARAS kidney released the c-kit-ligand stem cell factor, uric acid, and EPO, and upregulated integrin beta2, suggesting activation of corresponding homing signaling. However, angiopoietin-1 and SDF-1/CXCR4 were not elevated. Administration of EPC into the stenotic kidney restored angiogenic activity, improved MV density, renal hemodynamics and function, decreased fibrosis and oxidative stress, and attenuated endogenous injury signals. The ARAS kidney releases specific homing signals corresponding to cognate receptors expressed by EPC. EPC show plasticity for organ-specific recruitment strategies, which are upregulated in early atherosclerosis. EPC are renoprotective as they attenuated renal dysfunction and damage in chronic ARAS, and consequently decreased the injury signals. Importantly, manipulation of homing signals may potentially allow therapeutic opportunities to increase endogenous EPC recruitment.
Collapse
Affiliation(s)
- Alejandro R Chade
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|