1
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. In silico identification of novel ligands targeting stress-related human FKBP5 protein in mental disorders. PLoS One 2025; 20:e0320017. [PMID: 40096182 PMCID: PMC11913304 DOI: 10.1371/journal.pone.0320017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
FK506-binding protein 51 (FKBP51 or FKBP5) serves as a crucial stress modulator implicated in mental disorders, presenting a potential target for intervention. Inhibitors like SAFit2, rapamycin, and tacrolimus exhibit promising interactions with this protein. Despite these advances, challenges persist in diversifying FKBP5 ligands, prompting further exploration of interaction partners. Hence, this study aims to identify other potential ligands. Employing molecular docking, we generated complexes with various ligands (rapamycin, tacrolimus, SAFit2-Selective antagonist of FKBP51 by induced fit, ascomycin, pimecrolimus, rosavin, salidroside, curcumin, apigenin, uvaricin, ruscogenin, neoruscogenin, pumicalagin, castalagin, and grandinin). We identified the top 3 best ligands, of which ruscogenin and neoruscogenin had notable abilities to cross the blood-brain barrier and have high gastrointestinal absorption, like curcumin. Toxicity predictions show ruscogenin and neoruscogenin to be the least toxic based on oral toxicity classification (Class VI). Tyrosine (Tyr113) formed consistent interactions with all ligands in the complex, reinforcing their potential and involvement in stress modulation. Molecular dynamic (MD) simulation validated strong interactions between our three key ligands and FKBP5 protein and provided an understanding of the stability of the complex. The binding free energy (ΔG) of the best ligands (based on pharmacological properties) from MD simulation analysis is -31.78 kcal/mol for neoruscogenin, -30.41 kcal/mol for ruscogenin, and -27.6 kcal/mol for curcumin. These molecules, therefore, can serve as therapeutic molecules or biomarkers for research in stress-impacted mental disorders. While offering therapeutic implications for mental disorders by attenuating stress impact, it is crucial to emphasize that these ligands' transition to clinical applications necessitates extensive experimental research, including clinical trials, to unravel the intricate molecular and neural pathways involved in these interactions.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Pediatric Oncology, Hematology, and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
Floris G, Zanda MT, Dabrowski KR, Daws SE. Neuroinflammatory history results in overlapping transcriptional signatures with heroin exposure in the nucleus accumbens and alters responsiveness to heroin in male rats. Transl Psychiatry 2024; 14:500. [PMID: 39702361 DOI: 10.1038/s41398-024-03203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward. By integrating RNA sequencing with bioinformatic and statistical analyses, we observed significant transcriptional overlaps between neuroinflammation and experimenter-administered heroin exposure in the NAc. Furthermore, we identified a subset of NAc genes synergistically regulated by LPS and heroin, suggesting that LPS history may exacerbate some heroin-induced molecular neuroadaptations. We extended our findings to examine the impact of neuroinflammatory history on responsiveness to heroin in a locomotor sensitization assay and observed LPS-induced exacerbation of heroin sensitization, indicating that neuroinflammation may increase sensitivity to opioids' behavioral effects. Lastly, we performed comparative analysis of the NAc transcriptional profiles of LPS-heroin rats with those obtained from voluntary heroin intake in a rat model of heroin self-administration (SA) and published human OUD datasets. We observed significant convergence of the three datasets and identified transcriptional patterns in the preclinical models that recapitulated human OUD neuropathology, highlighting the utility of preclinical models to further investigate molecular mechanisms of OUD pathology. Overall, our study elucidates transcriptional interconnections between neuroinflammation and heroin exposure, and also provides evidence of the behavioral ramifications of such interactions. By bridging the gap between neuroinflammation and heroin exposure at the transcriptional level, our work provides valuable insights for future research aimed at mitigating the influence of inflammatory pathways in OUD.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry 2024; 14:63. [PMID: 38272880 PMCID: PMC10810856 DOI: 10.1038/s41398-024-02778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The question of whether immune dysfunction contributes to risk of psychiatric disorders has long been a subject of interest. To assert this hypothesis a plethora of correlative evidence has been accumulated from the past decades; however, a variety of technical and practical obstacles impeded on a cause-effect interpretation of these data. With the advent of large-scale omics technology and advanced statistical models, particularly Mendelian randomization, new studies testing this old hypothesis are accruing. Here we synthesize these new findings from genomics and genetic causal inference studies on the role of immune dysfunction in major psychiatric disorders and reconcile these new data with pre-omics findings. By reconciling these evidences, we aim to identify key gaps and propose directions for future studies in the field.
Collapse
Affiliation(s)
- Olena Iakunchykova
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Esten H Leonardsen
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
4
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
5
|
So HC, Chau KL, Ao FK, Mo CH, Sham PC. Exploring shared genetic bases and causal relationships of schizophrenia and bipolar disorder with 28 cardiovascular and metabolic traits. Psychol Med 2019; 49:1286-1298. [PMID: 30045777 DOI: 10.1017/s0033291718001812] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cardiovascular diseases represent a major health issue in patients with schizophrenia (SCZ) and bipolar disorder (BD), but the exact nature of cardiometabolic (CM) abnormalities involved and the underlying mechanisms remain unclear. Psychiatric medications are known risk factors, but it is unclear whether there is a connection between the disorders (SCZ/BD) themselves and CM abnormalities. METHODS Using polygenic risk scores and linkage disequilibrium score regression, we investigated the shared genetic bases of SCZ and BD with 28 CM traits. We performed Mendelian randomization (MR) to elucidate causal relationships between the two groups of disorders. The analysis was based on large-scale meta-analyses of genome-wide association studies. We also identified the potential shared genetic variants and inferred the pathways involved. RESULTS We found tentative polygenic associations of SCZ with glucose metabolism abnormalities, adverse adipokine profiles, increased waist-to-hip ratio and visceral adiposity (false discovery rate or FDR<0.05). However, there was an inverse association with body mass index. For BD, we observed several polygenic associations with favorable CM profiles at FDR<0.05. MR analysis showed that SCZ may be causally linked to raised triglyceride and that lower fasting glucose may be linked to BD. We also identified numerous single nucleotide polymorphisms and pathways shared between SCZ/BD with CM traits, some of which are related to inflammation or the immune system. CONCLUSIONS Our findings suggest that SCZ patients may be genetically predisposed to several CM abnormalities independent of medication side effects. On the other hand, CM abnormalities in BD may be more likely to be secondary. However, the findings require further validation.
Collapse
Affiliation(s)
- Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong,Shatin,Hong Kong
| | - Kwan-Long Chau
- School of Biomedical Sciences, The Chinese University of Hong Kong,Shatin,Hong Kong
| | - Fu-Kiu Ao
- School of Biomedical Sciences, The Chinese University of Hong Kong,Shatin,Hong Kong
| | - Cheuk-Hei Mo
- Faculty of Medicine,The Chinese University of Hong Kong,Shatin,Hong Kong
| | - Pak-Chung Sham
- Department of Psychiatry,University of Hong Kong,Pokfulam,Hong Kong
| |
Collapse
|
6
|
Kopczynska M, Zelek W, Touchard S, Gaughran F, Di Forti M, Mondelli V, Murray R, O'Donovan MC, Morgan BP. Complement system biomarkers in first episode psychosis. Schizophr Res 2019; 204:16-22. [PMID: 29279246 PMCID: PMC6406022 DOI: 10.1016/j.schres.2017.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Several lines of evidence implicate immunological/inflammatory factors in development of schizophrenia. Complement is a key driver of inflammation, and complement dysregulation causes pathology in many diseases. Here we explored whether complement dysregulation occurred in first episode psychosis (FEP) and whether this provides a source of biomarkers. Eleven complement analytes (C1q, C3, C4, C5, factor B [FB], terminal complement complex [TCC], factor H [FH], FH-related proteins [FHR125], Properdin, C1 inhibitor [C1inh], soluble complement receptor 1 [CR1]) plus C-reactive protein (CRP) were measured in serum from 136 first episode psychosis (FEP) cases and 42 mentally healthy controls using established in-house or commercial ELISA. The relationship between caseness and variables (analytes measured, sex, age, ethnicity, tobacco/cannabis smoking) was tested by multivariate logistic regression. When measured individually, only TCC was significantly different between FEP and controls (p=0.01). Stepwise selection demonstrated interdependence between some variables and revealed other variables that significantly and independently contributed to distinguishing cases and controls. The final model included demographics (sex, ethnicity, age, tobacco smoking) and a subset of analytes (C3, C4, C5, TCC, C1inh, FHR125, CR1). A receiver operating curve analysis combining these variables yielded an area under the curve of 0.79 for differentiating FEP from controls. This model was confirmed by multiple replications using randomly selected sample subsets. The data suggest that complement dysregulation occurs in FEP, supporting an underlying immune/inflammatory component to the disorder. Classification of FEP cases according to biological variables rather than symptoms would help stratify cases to identify those that might most benefit from therapeutic modification of the inflammatory response.
Collapse
Affiliation(s)
- Maja Kopczynska
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF144XN, UK
| | - Wioleta Zelek
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF144XN, UK
| | - Samuel Touchard
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF144XN, UK
| | - Fiona Gaughran
- Institute of Psychiatry, Psychology and Neuroscience, King's College, De Crespigny Park, London SE5 8AF, UK
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience, King's College, De Crespigny Park, London SE5 8AF, UK
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, King's College, De Crespigny Park, London SE5 8AF, UK
| | - Robin Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College, De Crespigny Park, London SE5 8AF, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF144XN, UK
| | - B Paul Morgan
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF144XN, UK.
| |
Collapse
|
7
|
Roberts S, Wong CCY, Breen G, Coleman JRI, De Jong S, Jöhren P, Keers R, Curtis C, Lee SH, Margraf J, Schneider S, Teismann T, Wannemüller A, Lester KJ, Eley TC. Genome-wide expression and response to exposure-based psychological therapy for anxiety disorders. Transl Psychiatry 2017; 7:e1219. [PMID: 28850109 PMCID: PMC5611743 DOI: 10.1038/tp.2017.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/09/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure-based psychological treatments for anxiety have high efficacy. However, a substantial proportion of patients do not respond to therapy. Research examining the potential biological underpinnings of therapy response is still in its infancy, and most studies have focussed on candidate genes. To our knowledge, this study represents the first investigation of genome-wide expression profiles with respect to treatment outcome. Participants (n=102) with panic disorder or specific phobia received exposure-based cognitive behavioural therapy. Treatment outcome was defined as percentage reduction from baseline in clinician-rated severity of their primary anxiety diagnosis at post treatment and 6 month follow-up. Gene expression was determined from whole blood samples at three time points using the Illumina HT-12v4 BeadChip microarray. Linear regression models tested the association between treatment outcome and changes in gene expression from pre-treatment to post treatment, and pre-treatment to follow-up. Network analysis was conducted using weighted gene co-expression network analysis, and change in the detected modules from pre-treatment to post treatment and follow-up was tested for association with treatment outcome. No changes in gene expression were significantly associated with treatment outcomes when correcting for multiple testing (q<0.05), although a small number of genes showed a suggestive association with treatment outcome (q<0.5, n=20). Network analysis showed no association between treatment outcome and change in gene expression for any module. We report suggestive evidence for the role of a small number of genes in treatment outcome. Although preliminary, these findings contribute to a growing body of research suggesting that response to psychological therapies may be associated with changes at a biological level.
Collapse
Affiliation(s)
- S Roberts
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - C C Y Wong
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - G Breen
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - J R I Coleman
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - S De Jong
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - P Jöhren
- Dental Clinic Bochum, Bochum, Germany
| | - R Keers
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - C Curtis
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - S H Lee
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - J Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - S Schneider
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - T Teismann
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - A Wannemüller
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - K J Lester
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,School of Psychology, University of Sussex, Brighton, UK,School of Psychology, University of Sussex, Pevensey Building, Brighton BN1 9QH, UK. E-mail:
| | - T C Eley
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,King’s College London, Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Box PO80, Denmark Hill,16 De Crespigny Park, London SE5 8AF, UKE-mail:
| |
Collapse
|