1
|
Dagher M, Cahill CM, Andrews AM. Safety in treatment: Classical pharmacotherapeutics and new avenues for addressing maternal depression and anxiety during pregnancy. Pharmacol Rev 2025; 77:100046. [PMID: 40056793 DOI: 10.1016/j.pharmr.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
We aimed to review clinical research on the safety profiles of antidepressant drugs and associations with maternal depression and neonatal outcomes. We focused on neuroendocrine changes during pregnancy and their effects on antidepressant pharmacokinetics. Pregnancy-induced alterations in drug disposition and metabolism impacting mothers and their fetuses are discussed. We considered evidence for the risks of antidepressant use during pregnancy. Teratogenicity associated with ongoing treatment, new prescriptions during pregnancy, or pausing medication while pregnant was examined. The Food and Drug Administration advises caution regarding prenatal exposure to most drugs, including antidepressants, largely owing to a dearth of safety studies caused by the common exclusion of pregnant individuals in clinical trials. We contrasted findings on antidepressant use with the lack of treatment where detrimental effects to mothers and children are well researched. Overall, drug classes such as selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors appear to have limited adverse effects on fetal health and child development. In the face of an increasing prevalence of major mood and anxiety disorders, we assert that individuals should be counseled before and during pregnancy about the risks and benefits of antidepressant treatment given that withholding treatment has possible negative outcomes. Moreover, newer therapeutics, such as ketamine and κ-opioid receptor antagonists, warrant further investigation for use during pregnancy. SIGNIFICANCE STATEMENT: The safety of antidepressant use during pregnancy remains controversial owing to an incomplete understanding of how drug exposure affects fetal development, brain maturation, and behavior in offspring. This leaves pregnant people especially vulnerable, as pregnancy can be a highly stressful experience for many individuals, with stress being the biggest known risk factor for developing a mood or anxiety disorder. This review focuses on perinatal pharmacotherapy for treating mood and anxiety disorders, highlighting the current knowledge and gaps in our understanding of consequences of treatment.
Collapse
Affiliation(s)
- Merel Dagher
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California.
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Anne M Andrews
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Liang J, Yu Q, Liu Y, Qiu Y, Tang R, Yan L, Zhou P. Gray matter abnormalities in patients with major depressive disorder and social anxiety disorder: a voxel-based meta-analysis. Brain Imaging Behav 2023; 17:749-763. [PMID: 37725323 PMCID: PMC10733224 DOI: 10.1007/s11682-023-00797-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Major depressive and social anxiety disorders have a high comorbidity rate and similar cognitive patterns. However, their unique and shared neuroanatomical characteristics have not been fully identified. METHODS Voxel-based morphometric studies comparing gray matter volume between patients with major depressive disorder/social anxiety disorder and healthy controls were searched using 4 electronic databases from the inception to March 2022. Stereotactic data were extracted and subsequently tested for convergence and differences using activation likelihood estimation. In addition, based on the result of the meta-analysis, behavioral analysis was performed to assess the functional roles of the regions affected by major depressive disorder and/or social anxiety disorder. RESULTS In total, 34 studies on major depressive disorder with 2873 participants, and 10 studies on social anxiety disorder with 1004 subjects were included. Gray matter volume conjunction analysis showed that the right parahippocampal gyrus region, especially the amygdala, was smaller in patients compared to healthy controls. The contrast analysis of major depressive disorder and social anxiety disorder revealed lower gray matter volume in the right lentiform nucleus and medial frontal gyrus in social anxiety disorder and lower gray matter volume in the left parahippocampal gyrus in major depressive disorder. Behavioral analysis showed that regions with lower gray matter volume in social anxiety disorder are strongly associated with negative emotional processes. CONCLUSIONS The shared and unique patterns of gray matter volume abnormalities in patients with major depressive and social anxiety disorder may be linked to the underlying neuropathogenesis of these mental illnesses and provide potential biomarkers. PROSPERO registration number: CRD42021277546.
Collapse
Affiliation(s)
- Junquan Liang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoyun Yu
- Jingzhou Traditional Chinese Medicine Hospital, Jingzhou, Hubei, China
| | - Yuchen Liu
- Shenzhen Luohu District Hospital of TCM, Shenzhen, Guangdong, China
| | - Yidan Qiu
- Centre for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Rundong Tang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Luda Yan
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Peng Zhou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China.
| |
Collapse
|
3
|
Choi SO, Choi JG, Yun JY. A Study of Brain Function Characteristics of Service Members at High Risk for Accidents in the Military. Brain Sci 2023; 13:1157. [PMID: 37626513 PMCID: PMC10452066 DOI: 10.3390/brainsci13081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Military accidents are often associated with stress and depressive psychological conditions among soldiers, and they often fail to adapt to military life. Therefore, this study analyzes whether there are differences in EEG and pulse wave indices between general soldiers and three groups of soldiers who have not adapted to military life and are at risk of accidents. Data collection was carried out using a questionnaire and a device that can measure EEG and pulse waves, and data analysis was performed using SPSS. The results showed that the concentration level and brain activity indices were higher in the general soldiers and the soldiers in the first stage of accident risk. The body stress index was higher for each stage of accident risk, and the physical vitality index was higher for general soldiers. Therefore, it can be seen that soldiers who have not adapted to military life and are at risk of accidents have somewhat lower concentration and brain activity than general soldiers, and have symptoms of stress and lethargy. The results of this study will contribute to reducing human accidents through EEG and pulse wave measurements not only in the military but also in occupations with a high risk of accidents such as construction.
Collapse
Affiliation(s)
| | | | - Jong-Yong Yun
- Department of Protection and Safety Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Kotoula V, Evans JW, Punturieri C, Johnson SC, Zarate CA. Functional MRI markers for treatment-resistant depression: Insights and challenges. PROGRESS IN BRAIN RESEARCH 2023; 278:117-148. [PMID: 37414490 PMCID: PMC10501192 DOI: 10.1016/bs.pbr.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Claire Punturieri
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Sara C Johnson
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Bansal R, Hellerstein DJ, Sawardekar S, Chen Y, Peterson BS. A randomized controlled trial of desvenlafaxine-induced structural brain changes in the treatment of persistent depressive disorder. Psychiatry Res Neuroimaging 2023; 331:111634. [PMID: 36996664 DOI: 10.1016/j.pscychresns.2023.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
The anatomical changes that antidepressant medications induce in the brain and through which they exert their therapeutic effects remain largely unknown. We randomized 61 patients with Persistent Depressive Disorder (PDD) to receive either desvenlafaxine or placebo in a 12-week trial and acquired anatomical MRI scans in 42 of those patients at baseline before randomization and immediately at the end of the trial. We also acquired MRIs once in 39 age- and sex-matched healthy controls. We assessed whether the serotonin-norepinephrine reuptake inhibitor, desvenlafaxine, differentially changed cortical thickness during the trial compared with placebo. Patients relative to controls at baseline had thinner cortices across the brain. Although baseline thickness was not associated with symptom severity, thicker baseline cortices predicted greater reduction in symptom severity in those treated with desvenlafaxine but not placebo. We did not detect significant treatment-by-time effects on cortical thickness. These findings suggest that baseline thickness may serve as predictive biomarkers for treatment response to desvenlafaxine. The absence of treatment-by-time effects may be attributable either to use of insufficient desvenlafaxine dosing, a lack of desvenlafaxine efficacy in treating PDD, or the short trial duration.
Collapse
Affiliation(s)
- Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA.
| | - David J Hellerstein
- Depression Evaluation Service, Division of Clinical Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA
| | - Ying Chen
- Depression Evaluation Service, Division of Clinical Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, CA 90027, USA; Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA 90033, USA
| |
Collapse
|
6
|
Mizutani-Tiebel Y, Takahashi S, Karali T, Mezger E, Bulubas L, Papazova I, Dechantsreiter E, Stoecklein S, Papazov B, Thielscher A, Padberg F, Keeser D. Differences in electric field strength between clinical and non-clinical populations induced by prefrontal tDCS: A cross-diagnostic, individual MRI-based modeling study. Neuroimage Clin 2022; 34:103011. [PMID: 35487132 PMCID: PMC9125784 DOI: 10.1016/j.nicl.2022.103011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
MDD and SCZ showed lower prefrontal tDCS-induced e-field strengths compared to HC. Average e-field strengths did not significantly differ between MDD and SCZ patients. Inter-individual variability of e-field intensities and distribution was prominent. Inter-rater variability emphasizes the importance of standardized positioning.
Introduction Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose–response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. Method The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. Result On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. Conclusion MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose–response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany.
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Temmuz Karali
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Augsburg, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | | | - Boris Papazov
- NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM), Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; Munich Center for Neurosciences (MCN) - Brain & Mind, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Runia N, Yücel DE, Lok A, de Jong K, Denys DAJP, van Wingen GA, Bergfeld IO. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2021; 132:433-448. [PMID: 34890601 DOI: 10.1016/j.neubiorev.2021.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition associated with higher medical costs, increased illness burden, and reduced quality of life compared to non-treatment-resistant major depressive disorder (MDD). The question arises whether TRD can be considered a distinct MDD sub-type based on neurobiological features. To answer this question we conducted a systematic review of neuroimaging studies investigating the neurobiological differences between TRD and non-TRD. Our main findings are that patients with TRD show 1) reduced functional connectivity (FC) within the default mode network (DMN), 2) reduced FC between components of the DMN and other brain areas, and 3) hyperactivity of DMN regions. In addition, aberrant activity and FC in the occipital lobe may play a role in TRD. The main limitations of most studies were related to inherent confounding factors for comparing TRD with non-TRD, such as differences in disease chronicity/severity and medication history. Future studies may use prospective longitudinal neuroimaging designs to delineate which effects are present in treatment-naive patients and which effects are the result of disease progression.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dilan E Yücel
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki de Jong
- University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan A J P Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Isidoor O Bergfeld
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Cytomegalovirus Immunity, Inflammation and Cognitive Abilities in the Elderly. Viruses 2021; 13:v13112321. [PMID: 34835127 PMCID: PMC8622306 DOI: 10.3390/v13112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Reducing the socioeconomic toll from age-related physical and mental morbidities requires better understanding of factors affecting healthy aging. While many environmental, lifestyle, and genetic factors affect healthy aging, this study addressed the influence of cytomegalovirus (CMV) infection and immunity on age-related inflammation and cognitive abilities. Healthy adults 70–90 years old were recruited into a prospective study investigating relationships between anti-CMV immunity, markers of inflammation, baseline measures of cognitive ability, and changes in cognitive ability over 18 months. Humoral and cellular responses against CMV, levels of inflammatory markers, and cognitive abilities were measured at study entry, with measurement of cognitive abilities repeated 18 months later. CMV-seropositive and -seronegative sub-groups were compared, and relationships between anti-CMV immunity, markers of inflammation, and cognitive ability were assessed. Twenty-eight of 39 participants were CMV-seropositive, and two had CMV-specific CD8+ T cell responses indicative of CMV immune memory inflation. No significant differences for markers of inflammation or measures of cognitive ability were observed between groups, and cognitive scores changed little over 18 months. Significant correlations between markers of inflammation and cognitive scores with interconnection between anti-CMV antibody levels, fractalkine, cognitive ability, and depression scores suggest areas of focus for future studies.
Collapse
|
9
|
Serra-Blasco M, Radua J, Soriano-Mas C, Gómez-Benlloch A, Porta-Casteràs D, Carulla-Roig M, Albajes-Eizagirre A, Arnone D, Klauser P, Canales-Rodríguez EJ, Hilbert K, Wise T, Cheng Y, Kandilarova S, Mataix-Cols D, Vieta E, Via E, Cardoner N. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis. Neurosci Biobehav Rev 2021; 129:269-281. [PMID: 34256069 DOI: 10.1016/j.neubiorev.2021.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
The high comorbidity of Major Depressive Disorder (MDD), Anxiety Disorders (ANX), and Posttraumatic Stress Disorder (PTSD) has hindered the study of their structural neural correlates. The authors analyzed specific and common grey matter volume (GMV) characteristics by comparing them with healthy controls (HC). The meta-analysis of voxel-based morphometry (VBM) studies showed unique GMV diminutions for each disorder (p < 0.05, corrected) and less robust smaller GMV across diagnostics (p < 0.01, uncorrected). Pairwise comparison between the disorders showed GMV differences in MDD versus ANX and in ANX versus PTSD. These results endorse the hypothesis that unique clinical features characterizing MDD, ANX, and PTSD are also reflected by disorder specific GMV correlates.
Collapse
Affiliation(s)
- Maria Serra-Blasco
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychology, Abat Oliba CEU University, Spain; Programa E-Health ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Carles Soriano-Mas
- Institut d'Investigació Biomèdica De Bellvitge-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | | | - Daniel Porta-Casteràs
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain
| | - Marta Carulla-Roig
- Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain
| | | | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), United Arab Emirates; Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Psychiatry, Service of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Australia
| | - Eric J Canales-Rodríguez
- FIDMAG Research Foundation, Germanes Hospitalàries, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale De Lausanne (EPFL), Switzerland; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Kevin Hilbert
- Humboldt-Universität Zu Berlin, Department of Psychology, Berlin, Germany
| | - Toby Wise
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London & Division of the Humanities and Social Sciences, California Institute of Technology, Caltech, United States
| | - Yuqui Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute at Medical University of Plovdiv, Bulgaria
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain; Child and Adolescent Mental Health Research Group, Institut De Recerca Sant Joan De Déu, Barcelona, Spain.
| | - Narcís Cardoner
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain.
| |
Collapse
|
10
|
Strawbridge R, Carter R, Saldarini F, Tsapekos D, Young AH. Inflammatory biomarkers and cognitive functioning in individuals with euthymic bipolar disorder: exploratory study. BJPsych Open 2021; 7:e126. [PMID: 36043690 PMCID: PMC8281256 DOI: 10.1192/bjo.2021.966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neurobiological research frequently implicates inflammatory and neurogenic components with core aspects of bipolar disorder. Even in periods of symptom remission (euthymia), individuals with bipolar disorder experience cognitive impairments, which are increasingly being proposed as an outcome for interventions; identifying biomarkers associated with cognitive impairment in people with bipolar disorder could advance progress in this therapeutic field through identifying biological treatment targets. AIMS We aimed to identify proteomic biomarker correlates of cognitive impairment in individuals with euthymic bipolar disorder. METHOD Forty-four adults with a bipolar disorder diagnosis in euthymia underwent a battery of cognitive assessments and provided blood for biomarkers. We examined a comprehensive panel of inflammatory and trophic proteins as putative cross-sectional predictors of cognition, conceptualised according to recommended definitions of clinically significant cognitive impairment (binary construct) and global cognitive performance (continuous measure). RESULTS A total of 48% of the sample met the criteria for cognitive impairment. Adjusting for potentially important covariates, regression analyses identified lower levels of three proteins as significantly and independently associated with cognitive deficits, according to both binary and continuous definitions (interleukin-7, vascular endothelial growth factor C and placental growth factor), and one positively correlated with (continuous) global cognitive performance (basic fibroblast growth factor). CONCLUSIONS This study identifies four candidate markers of cognitive impairment in bipolar disorder, none of which have been previously compared with cognitive function in participants with bipolar disorder. Pending replication in larger samples and support from longitudinal studies, these markers could have implications for treating cognitive dysfunction in this patient population.
Collapse
Affiliation(s)
- Rebecca Strawbridge
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Rowena Carter
- National Affective Disorders Service, South London & Maudsley NHS Foundation Trust, UK
| | - Francesco Saldarini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dimosthenis Tsapekos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; and National Affective Disorders Service, South London & Maudsley NHS Foundation Trust, UK
| |
Collapse
|
11
|
Cattarinussi G, Delvecchio G, Maggioni E, Bressi C, Brambilla P. Ultra-high field imaging in Major Depressive Disorder: a review of structural and functional studies. J Affect Disord 2021; 290:65-73. [PMID: 33993082 DOI: 10.1016/j.jad.2021.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe and pervasive psychiatric condition with a lifetime prevalence of 15-25%. Numerous Magnetic Resonance Imaging (MRI) studies employing scans at field strengths of 1.5T or 3T have been carried out in the last decades, providing an unprecedented insight into the neural correlates of MDD. However, in recent years, MRI technology has largely progressed and the use of scans at ultra-high field (≥ 7T) has improved the sensitivity and the resolution of MR images. In this context, with this review we aim to summarize evidence of structural and functional brain mechanisms underlying MDD obtained with ultra-high field MRI. METHODS We conducted a search on PubMed, Scopus and Web of Science of neuroimaging studies on MDD patients, which employed ultra-high field MRI. We detected six structural MRI studies, two Diffusion Tensor Imaging (DTI) studies and five functional MRI (fMRI) studies. RESULTS Overall, the MRI and DTI studies showed volumetric and structural connectivity alterations in the hippocampus and, to a lesser extent, in the amygdala. In contrast, more heterogeneous results were reported by fMRI studies, which, though, described functional abnormalities in the cingulate cortex, thalamus and several other brain areas. LIMITATIONS The small sample size and the heterogeneity in patients' samples, processing and study design limit the conclusion of the present review. CONCLUSIONS Studies employing scans at ultra-high magnetic field may provide a useful contribution to the mixed body of literature on MDD. This preliminary but promising evidence confirms the importance of performing ultra-high field MRI investigations in order to detect and better characterize subtle brain abnormalities in MDD.
Collapse
Affiliation(s)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy.
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cinzia Bressi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
13
|
López-Solà C, Subirà M, Serra-Blasco M, Vicent-Gil M, Navarra-Ventura G, Aguilar E, Acebillo S, Palao DJ, Cardoner N. Is cognitive dysfunction involved in difficult-to-treat depression? Characterizing resistance from a cognitive perspective. Eur Psychiatry 2020; 63:e74. [PMID: 32571441 PMCID: PMC7443785 DOI: 10.1192/j.eurpsy.2020.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study aimed to identify clinical and cognitive factors associated with increased risk for difficult-to-treat depression (DTD) or treatment-resistant depression (TRD). METHODS A total of 229 adult outpatients with major depression were recruited from the mental health unit at a public hospital. Participants were subdivided into resistant and nonresistant groups according to their Maudsley Staging Model score. Sociodemographic, clinical, and cognitive (objective and subjective measures) variables were compared between groups, and a logistic regression model was used to identify the factors most associated with TRD risk. RESULTS TRD group patients present higher verbal memory impairment than the nonresistant group irrespective of pharmacological treatment or depressive symptom severity. Logistic regression analysis showed that low verbal memory scores (odds ratio [OR]: 2.02; 95% confidence interval [CI]: 1.38-2.95) together with high depressive symptom severity (OR: 1.29; CI95%: 1.01-1.65) were associated with TRD risk. CONCLUSIONS Our findings align with neuroprogression models of depression, in which more severe patients, defined by greater verbal memory impairment and depressive symptoms, develop a more resistant profile as a result of increasingly detrimental neuronal changes. Moreover, our results support a more comprehensive approach in the evaluation and treatment of DTD in order to improve illness course. Longitudinal studies are warranted to confirm the predictive value of verbal memory and depression severity in the development of TRD.
Collapse
Affiliation(s)
- Clara López-Solà
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | - Marta Subirà
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | - Maria Serra-Blasco
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Muriel Vicent-Gil
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Psychiatry, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Guillem Navarra-Ventura
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Aguilar
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Siddarta Acebillo
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Diego J. Palao
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Zhang T, Zhao B, Shi C, Nie B, Liu H, Yang X, Sun Y, Li P, Lin L, Yang X, Li J, Gao X, Feng S, Li X, Sun X, Pan T, Feng T, Bao T, Shan B. Subthreshold depression may exist on a spectrum with major depressive disorder: Evidence from gray matter volume and morphological brain network. J Affect Disord 2020; 266:243-251. [PMID: 32056884 DOI: 10.1016/j.jad.2020.01.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 01/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Subthreshold depression (StD) is a prevalent condition that may increase the risk of incident major depressive disorder (MDD). However, the relationship between StD and MDD remains unclear. METHODS A total of 153 adult subjects, including 53 drug-naive MDD, 50 StD and 50 healthy control (HC) subjects, underwent a T1-weighted magnetic resonance imaging scan, and the gray matter volume (GMV) alterations among the three groups were quantitatively analyzed using voxel-based morphometry (VBM). Then, to capture the whole-brain connectivity characteristics, we constructed morphological brain networks (MBN) based on the similarity among brain regions of individual VBM images and compared the network connection strengths among the three groups. RESULTS The StD and MDD subjects had similar patterns of GMV reductions in the orbitofrontal cortex and left temporal gyrus, although the magnitude of the reductions was smaller in StD subjects. Moreover, a total of 21 morphological connections were significantly different among the three groups. For the majority of the different connections (15/21), the connection strength of the StD group took an intermediate position between that of the MDD and HC groups. LIMITATIONS There is still a lack of a consistent definition of StD, and the age range of the subjects in this study was wide. Meanwhile the mechanisms and biological significance of the MBN remains to be clarified. CONCLUSIONS These results may support the hypothesis that depression is better expressed as a spectrum and that StD exists on a spectrum with MDD.
Collapse
Affiliation(s)
- Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bingcong Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China; Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Chuan Shi
- Peking University Six Hospital, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjing Yang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Panlong Li
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Physics, Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Lin
- Department of Acupuncture, Beijing Hospital, Beijing, China
| | - Xiuyan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Center on Aging Psychology Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhou Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Sun
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Physics, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Pan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Physics, Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Feng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Physics, Zhengzhou University, Zhengzhou, Henan, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China; CAS center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
15
|
Almonte MT, Capellàn P, Yap TE, Cordeiro MF. Retinal correlates of psychiatric disorders. Ther Adv Chronic Dis 2020; 11:2040622320905215. [PMID: 32215197 PMCID: PMC7065291 DOI: 10.1177/2040622320905215] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
Diagnosis and monitoring of psychiatric disorders rely heavily on subjective self-reports of clinical symptoms, which are complicated by the varying consistency of accounts reported by patients with an impaired mental state. Hence, more objective and quantifiable measures have been sought to provide clinicians with more robust methods to evaluate symptomology and track progression of disease in response to treatments. Owing to the shared origins of the retina and the brain, it has been suggested that changes in the retina may correlate with structural and functional changes in the brain. Vast improvements in retinal imaging, namely optical coherence tomography (OCT) and electrodiagnostic technology, have made it possible to investigate the eye at a microscopic level, allowing for the investigation of potential biomarkers in vivo. This review provides a summary of retinal biomarkers associated with schizophrenia, bipolar disorder and major depression, demonstrating how retinal biomarkers may be used to complement existing methods and provide structural markers of pathophysiological mechanisms that underpin brain dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Melanie T. Almonte
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | | - Timothy E. Yap
- Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | | |
Collapse
|
16
|
Decreased static and increased dynamic global signal topography in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109665. [PMID: 31202912 DOI: 10.1016/j.pnpbp.2019.109665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023]
Abstract
Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks. However, the details of altered large-scale coordination of MDD remains unknown. To explore the altered large-scale functional organization in MDD. We used static and dynamic global signal (GS) topography, which are data-driven methods to explore altered relationship between global and local neuronal activities in MDD. Sixty three MDD patients and matched 63 healthy controls (HCs) were recruited in current study. Patients with MDD presented decreased static GS topography in bilateral parahippocampal gyrus and hippocampus gyrus. Meanwhile, patients with MDD presented increased variability of dynamic GS topography in the right ventromedial prefrontal cortex. This result may reflect the decreased and unstable whole brain functional coherence in MDD. The decreased static GS topography in the right parahippocampal gyrus was correlated with psychomotor retardation in patients with MDD. Our results presented that the altered static and dynamic GS topography can provide distinct evidence on the physiological mechanisms of MDD.
Collapse
|
17
|
Meyer CS, Schreiner PJ, Lim K, Battapady H, Launer LJ. Depressive Symptomatology, Racial Discrimination Experience, and Brain Tissue Volumes Observed on Magnetic Resonance Imaging. Am J Epidemiol 2019; 188:656-663. [PMID: 30657841 PMCID: PMC6438808 DOI: 10.1093/aje/kwy282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Not much is known about brain structural change in younger populations and minorities. The cross-sectional relationship between depressive symptomatology and racial discrimination with structural measures of brain tissue volume was investigated using magnetic resonance images of 710 participants in the Coronary Artery Risk Development in Young Adults CARDIA Study in 2010. Those reporting depressive symptoms and racial discrimination had lower total brain matter volume compared with those who reported neither (-8.8 mL, 95% confidence interval (CI): -16.4, -1.2), those who reported depressive symptoms only (-10.9 mL, 95% CI: -20.4, -1.4), and those who reported racial discrimination only (-8.6 mL, 95% CI: -16.5, -0.8). Results were similar for total normal white matter. There were 103% higher odds (odds ratio = 2.03, 95% CI: 1.32, 3.14) of being in the highest quartile of white matter hyperintensities in those with depressive symptoms only compared to those without. Although tests for interaction by race were not statistically significant, sensitivity analyses stratified by race revealed inverse associations with total brain matter and total white matter volumes only among black participants with combined depressive symptomatology and experience of racial discrimination, and positive associations only among white participants with depressive symptoms with presence of white matter hyperintensities, suggesting future studies may focus on race.
Collapse
Affiliation(s)
- Craig S Meyer
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Twin Cities, Minnesota
| | - Kelvin Lim
- Department of Psychiatry, School of Medicine, University of Minnesota, Twin Cities, Minnesota
| | - Harsha Battapady
- University of Pennsylvania Health System, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lenore J Launer
- the Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Structural networks analysis for depression combined with graph theory and the properties of fiber tracts via diffusion tensor imaging. Neurosci Lett 2018; 694:34-40. [PMID: 30465819 DOI: 10.1016/j.neulet.2018.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022]
Abstract
Previous studies have suggested that major depressive disorder was associated with topological properties of impaired white matter. However, most related studies only use one property of nerve fibers to construct whole-brain structural brain network. Considering white matter changes variously, We hypothesized whether the alternations of white matter topological properties could reflect different impairment of white matter integrity. In addition, it is still unknown whether impaired integrity of the white matter fiber tracts has relationship with abnormal topological properties in MDD. This study investigated the impaired white matter by using graph theoretic analyses in a cohort of 37 MDD patients and 38 matched control subjects. In addition, we further investigated fiber tracts differences in three interregional connectivity matrixes of significant different topological regions in MDD. Our graph theoretic analyses demonstrated that 7 different regions were observed for the local measures in patients with MDD compared with control groups. These regions were the central nodes of cortical-limbic network, frontal-cingulate network, default mode network (DMN), cognitive control network(CCN)and affective network (AN). In addition, two impaired white matter pathways which included inferior longitudinal fasciculus (ILF) and cingulum were observed in MDD using fiber tracts analysis. We speculate impaired integrity of ILF is due to the alternations in the number of axons or myelination. The results further demonstrated that the number of fiber tracts of anterior cingulum was associated with the depression scores in MDD.
Collapse
|
19
|
Santos MAO, Bezerra LS, Carvalho ARMR, Brainer-Lima AM. Global hippocampal atrophy in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2018; 40:369-378. [PMID: 30234890 DOI: 10.1590/2237-6089-2017-0130] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD), an incapacitating mental disorder, is characterized by episodes of at least 2 weeks of apparent changes in mood, cognition, and neurovegetative functions. Many neuroimaging studies using magnetic resonance imaging (MRI) have examined morphometric changes in patients with MDD, but the results are not conclusive. This study aims to review the literature and perform a meta-analysis on hippocampal volume (HcV) in patients with MDD. METHODS Studies on HcV in patients with MDD diagnosis were identified from major databases (MEDLINE, EMBASE, The Cochrane Library, Scopus, PsycINFO, and SciELO) using the search terms depression, major depressive disorder, MDD, unipolar, magnetic resonance imaging, MRI, and hippocampus. RESULTS A meta-analysis of 29 studies fulfilling specific criteria was performed. The sample included 1327 patients and 1004 healthy participants. The studies were highly heterogeneous with respect to age, sex, age of onset, and average illness duration. However, the pooled effect size of depression was significant in both hippocampi. MDD was associated with right (-0.43; 95% confidence interval [95%CI] -0.66 to -0.21) and left (-0.40; 95%CI -0.66 to -0.15) hippocampal atrophy. CONCLUSIONS MDD seems to be associated with global HcV atrophy. Larger longitudinal follow-up studies designed to analyze the influence of sociodemographic variables on this relationship are required to yield better evidence about this topic.
Collapse
Affiliation(s)
- Marcelo Antônio Oliveira Santos
- Grupo de Pesquisa em Epidemiologia e Cardiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Universitário Maurício de Nassau, Recife, PE, Brazil
| | - Lucas Soares Bezerra
- Grupo de Pesquisa em Epidemiologia e Cardiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Universitário Maurício de Nassau, Recife, PE, Brazil
| | | | - Alessandra Mertens Brainer-Lima
- Centro Universitário Maurício de Nassau, Recife, PE, Brazil.,Pronto-Socorro Cardiológico Universitário de Pernambuco (PROCAPE), Universidade de Pernambuco (UPE), Recife, PE, Brazil
| |
Collapse
|
20
|
Neurobehavioral Mechanisms of Resilience Against Emotional Distress: An Integrative Brain-Personality-Symptom Approach Using Structural Equation Modeling. PERSONALITY NEUROSCIENCE 2018; 1:e8. [PMID: 32435728 PMCID: PMC7219678 DOI: 10.1017/pen.2018.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
Clarifying individual differences that predict resilience or vulnerability to emotional distress is crucial for identifying etiological factors contributing to affective disturbances, and to promoting emotional well-being. Despite recent progress identifying specific brain regions and personality traits, it remains unclear whether there are common factors underlying the structural aspects of the brain and the personality traits that, in turn, protect against symptoms of emotional distress. In the present study, an integrative structural equation model was developed to examine the associations among (1) a latent construct of Control, representing the volumes of a system of prefrontal cortical (PFC) regions including middle, inferior, and orbital frontal cortices; (2) a latent construct of Resilience personality traits including cognitive reappraisal, positive affectivity, and optimism; and (3) Anxiety and Depression symptoms, in a sample of 85 healthy young adults. Results showed that the latent construct of PFC volumes positively predicted the latent construct of Resilience, which in turn negatively predicted Anxiety. Mediation analysis confirmed that greater latent PFC volume is indirectly associated with lower Anxiety symptoms through greater latent trait Resilience. The model did not show a significant mediation for Depression. These results support the idea that there are common volumetric and personality factors that help protect against symptoms of emotional distress. These findings provide strong evidence that such brain-personality-symptom approaches can provide novel insights with valuable implications for understanding the interaction of these factors in healthy and clinically diagnosed individuals.
Collapse
|
21
|
Fluoxetine reverses behavior changes in socially isolated rats: role of the hippocampal GSH-dependent defense system and proinflammatory cytokines. Eur Arch Psychiatry Clin Neurosci 2017; 267:737-749. [PMID: 28474231 DOI: 10.1007/s00406-017-0807-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
Abstract
Exposure of an organism to chronic social isolation (CSIS) has been shown to have an important role in depression. Fluoxetine (Flx) is a first-line treatment for depression; however, its downstream mechanisms of action beyond serotonergic signaling remain ill-defined. We investigated the effect of 3 weeks of Flx (15 mg/kg/day) treatment on behavioral changes and protein expression/activity of the GSH-dependent defense system, including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GLR), and glutathione S-transferase (GST), as well as catalase (CAT), in the hippocampus of rats exposed to 6 weeks of CSIS. The subcellular distributions of nuclear factor-κB (NF-κB), as well as, cytosolic IL-1β and IL-6 protein expression, were also determined. CSIS induced depressive- and anxiety-like behaviors, evidenced by a decrease in sucrose preference and an increase in the number of buried marbles. Moreover, CSIS compromised redox homeostasis, targeting enzymes such as GPx, CAT, GST, and caused NF-κB nuclear translocation with a concomitant increase in IL-6 protein expression, without an effect on IL-1β. Flx treatment reversed CSIS-induced depressive- and anxiety-like behaviors, modulated GSH-dependent defense by increasing GLR and GST activity, and suppressed NF-κB activation and cytosolic IL-6 protein expression in socially isolated rats. The present study suggests that changes in the GSH-dependent defense system, NF-κB activation and increased IL-6 protein expression may have a role in social isolation-induced changes in a rat model of depression and anxiety, and contributes to our understanding of the mechanisms that underlie the antidepressant and anti-inflammatory activity of Flx in socially isolated rats.
Collapse
|
22
|
Sandu AL, Artiges E, Galinowski A, Gallarda T, Bellivier F, Lemaitre H, Granger B, Ringuenet D, Tzavara ET, Martinot JL, Paillère Martinot ML. Amygdala and regional volumes in treatment-resistant versus nontreatment-resistant depression patients. Depress Anxiety 2017; 34:1065-1071. [PMID: 28792656 DOI: 10.1002/da.22675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/22/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although treatment-resistant and nontreatment-resistant depressed patients show structural brain anomalies relative to healthy controls, the difference in regional volumetry between these two groups remains undocumented. METHODS A whole-brain voxel-based morphometry (VBM) analysis of regional volumes was performed in 125 participants' magnetic resonance images obtained on a 1.5 Tesla scanner; 41 had treatment-resistant depression (TRD), 40 nontreatment-resistant depression (non-TRD), and 44 were healthy controls. The groups were comparable for age and gender. Bipolar/unipolar features as well as pharmacological treatment classes were taken into account as covariates. RESULTS TRD patients had higher gray matter (GM) volume in the left and right amygdala than non-TRD patients. No difference was found between the TRD bipolar and the TRD unipolar patients, or between the non-TRD bipolar and non-TRD unipolar patients. An exploratory analysis showed that lithium-treated patients in both groups had higher GM volume in the superior and middle frontal gyri in both hemispheres. CONCLUSIONS Higher GM volume in amygdala detected in TRD patients might be seen in perspective with vulnerability to chronicity, revealed by medication resistance.
Collapse
Affiliation(s)
- Anca-Larisa Sandu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Aberdeen, UK
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Department of Psychiatry 91G16, Orsay Hospital, Orsay, France
| | - André Galinowski
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Frank Bellivier
- APHP Department of Psychiatry, Fernand Widal Hospital, Paris, France
| | - Hervé Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | - Bernard Granger
- APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France
| | - Damien Ringuenet
- Service de Psychiatrie et Addictologie, Hôpital Paul Brousse, APHP Villejuif, France
| | - Eleni T Tzavara
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France.,Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1130, UPMC, Paris, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France.,AP-HP Adolescents Psychopathology and Medicine Department, Maison de Solenn, Cochin Hospital and University Paris Descartes, Paris, France
| |
Collapse
|
23
|
Dohm K, Redlich R, Zwitserlood P, Dannlowski U. Trajectories of major depression disorders: A systematic review of longitudinal neuroimaging findings. Aust N Z J Psychiatry 2017; 51:441-454. [PMID: 27539592 DOI: 10.1177/0004867416661426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Structural and functional brain alterations in major depression disorder (MDD) are well studied in cross-sectional designs, but little is known about the causality between onset and course of depression on the one hand, and neurobiological changes over time on the other. To explore the direction of causality, longitudinal studies with a long time window (preferably years) are needed, but only few have been undertaken so far. This article reviews all prospective neuroimaging studies in MDD patients currently available and provides a critical discussion of methodological challenges involved in the investigation of the causal relationship between brain alterations and the course of MDD. METHOD We conducted a systematic review of studies published before September 2015, to identify structural magnetic resonance imaging (MRI) studies that assess the relation between neuronal alterations and MDD in longitudinal (⩾1 year) designs. RESULTS Only 15 studies meeting minimal standards were identified. An analysis of these longitudinal data showed a large heterogeneity between studies regarding design, samples, imaging methods, spatial restrictions and, consequently, results. There was a strong relationship between brain-volume outcomes and the current mood state, whereas longitudinal studies failed to clarify the influence of pre-existing brain changes on depressive outcome. CONCLUSION So far, available longitudinal studies cannot resolve the causality between the course of depression and neurobiological changes over time. Future studies should combine high methodological standards with large sample sizes. Cooperation in multi-center studies is indispensable to attain sufficient sample sizes, and should allow careful assessment of possible confounders.
Collapse
Affiliation(s)
- Katharina Dohm
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- 1 Department of Psychiatry, University of Münster, Münster, Germany.,3 Department of Psychiatry, University of Marburg, Marburg, Germany
| |
Collapse
|
24
|
Kalenderoglu A, Çelik M, Sevgi-Karadag A, Egilmez OB. Optic coherence tomography shows inflammation and degeneration in major depressive disorder patients correlated with disease severity. J Affect Disord 2016; 204:159-65. [PMID: 27344626 DOI: 10.1016/j.jad.2016.06.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 06/11/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous research has consistently detected inflammation in the etiology of depression and neuroimaging studies have demonstrated gray matter abnormalities implying a neurodegenerative process in depression. The aim of this study was to compare ganglion cell layer (GCL), and inner plexiform layer (IPL) volumes and retinal nerve fiber layer (RNFL) thickness between first episode and recurrent major depressive disorder (MDD) patients and controls using optic coherence tomography (OCT) in order to detect findings supporting a degenerative process. Also choroid thicknesses of the same groups were compared to examine effects of inflammation on MDD. METHODS This study included 50 recurrent MDD patients, 50 first episode MDD patients and 50 controls. OCT measurements were performed by a spectral OCT device. GCL and IPL volumes and RNFL and choroid thicknesses were measured automatically by the device. RESULTS GCL and IPL volumes were significantly smaller in recurrent depression patients than first episode patients and in all MDD patients than controls. Also there were significant negative correlations between their volumes and disease severity parameters such as Ham-D and CGI scores, and disease duration. RNFL thicknesses were also lower in recurrent MDD patients than first episode patients and all MDD patients than controls but statistical significance was achieved only for global RNFL and temporal superior RNFL. Mean choroid thickness was higher in MDD patients than controls and in first episode MDD patients than recurrent MDD patients. LIMITATIONS Cross-sectional design of our study limits conclusions about progressive degeneration during the course of MDD. Lack of a control neuroimaging method like magnetic resonance imaging makes it hard to draw firm conclusions from our results. CONCLUSIONS OCT finding of decreased GCL and IPL volumes supports previous research suggesting degeneration in MDD. OCT may be an important tool to track neurodegeneration in patients with major depression. Considering RNFL to be the latest layer that will be affected during course of degeneration, GCL and IPL volumes appear to be better parameters to follow. In addition, choroid may be an important structure to detect acute attack period and to follow inflammatory process in MDD like in systemic inflammatory diseases.
Collapse
Affiliation(s)
- Aysun Kalenderoglu
- Psychiatry Department of Adiyaman University Medical School, Adiyaman, Turkey
| | - Mustafa Çelik
- Psychiatry Department of Adiyaman University Medical School, Adiyaman, Turkey.
| | - Ayse Sevgi-Karadag
- Ophthalmology Department of Adiyaman University Medical School, Adiyaman, Turkey
| | | |
Collapse
|
25
|
Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:117-26. [PMID: 27046518 DOI: 10.1016/j.pnpbp.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel glutamatergic agents are needed.
Collapse
|
26
|
Abstract
This two-part series presents an integrative model for understanding and treating depression, encompassing the biological, psychological, social, and spiritual levels of the human being. Major depressive disorder may be seen as a dysregulated form of an adaptive response. Theories regarding the adaptive functions of depression drawn from psychology, evolutionary biology, ethology, neuroendocrinology, dream research, the philosophies of naturopathy and homeopathy, and the spiritual traditions of the Native Americans and other cultures are reviewed and synthesized. This model provides the basis for the rational application of a variety of complementary and conventional therapies.
Collapse
|
27
|
Mazarati A, Sankar R. Common Mechanisms Underlying Epileptogenesis and the Comorbidities of Epilepsy. Cold Spring Harb Perspect Med 2016; 6:6/7/a022798. [PMID: 27371669 DOI: 10.1101/cshperspect.a022798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of comorbidities in determining the quality of life of individuals with epilepsy and their families has received increasing attention in the past decade. Along with it has come a recognition that in some individuals, certain comorbidities may have preexisted, and may have contributed to their developing epilepsy. Many mechanisms are capable of interconnecting different dysfunctions that manifest as distinct disorders, often diagnosed and managed by different specialists. We review the human data from the perspective of epidemiology as well as insights gathered from neurodiagnostic and endocrine studies. Animal studies are reviewed to refine our mechanistic understanding of the connections, because they permit the narrowing of variables, which is not possible when studying humans.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| | - Raman Sankar
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752 Department of Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| |
Collapse
|
28
|
Allison DJ, Josse AR, Gabriel DA, Klentrou P, Ditor DS. Targeting inflammation to influence cognitive function following spinal cord injury: a randomized clinical trial. Spinal Cord 2016; 55:26-32. [PMID: 27324320 DOI: 10.1038/sc.2016.96] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN This study was a randomized, parallel-group, controlled clinical trial. OBJECTIVES The purpose of this study was to examine the efficacy of targeting inflammation as a means of improving cognitive function in individuals with spinal cord injury. SETTING Participants were recruited from the Niagara region of Ontario Canada and all testing occurred on-site at Brock University. METHODS Indices of memory and verbal learning were assessed by means of the California Verbal Learning Test (CVLT). Inflammation and concentrations of neuroactive compounds related to the kynurenine pathway were assessed via a number of pro- and anti-inflammatory cytokines, as well as tryptophan, kynurenine and several large neutral amino acids. All assessments were performed at baseline as well as at 1 month and 3 months during a 3-month intervention by means of an anti-inflammatory diet. RESULTS Despite a reduction in inflammation, all measures of the CVLT, including list A, trial 1 (P=0.48), learning slope (P=0.46), long delay free recall (P=0.83), intrusions (P=0.61) and repetitions (P=0.07), showed no significant group × time interaction. CONCLUSION It may be possible that the reduction in inflammation achieved in the current study was insufficient to induce substantial changes in indices of verbal learning and memory. Alternatively, as these participants likely underwent years of previous chronic inflammation, the underlying hippocampal damage may have negated potential improvements induced by acute reductions in inflammation.
Collapse
Affiliation(s)
- D J Allison
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada.,Brock-Niagara Centre for Health and Well-Being, St Catharines, Ontario, Canada
| | - A R Josse
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | - D A Gabriel
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | - P Klentrou
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | - D S Ditor
- Department of Kinesiology, Brock University, St Catharines, Ontario, Canada.,Brock-Niagara Centre for Health and Well-Being, St Catharines, Ontario, Canada
| |
Collapse
|
29
|
Lan MJ, Chhetry BT, Liston C, Mann JJ, Dubin M. Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex Induces Brain Morphological Changes in Regions Associated with a Treatment Resistant Major Depressive Episode: An Exploratory Analysis. Brain Stimul 2016; 9:577-83. [PMID: 27017072 DOI: 10.1016/j.brs.2016.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (TMS) is an FDA-approved antidepressant treatment but little is known of its mechanism of action. Specifically, downstream effects of TMS remain to be elucidated. OBJECTIVE/HYPOTHESIS This study aims to identify brain structural changes from TMS treatment of a treatment resistant depressive episode through an exploratory analysis. METHODS Twenty-seven subjects in a DSM-IV current major depressive episode and on a stable medication regimen had a 3T magnetic resonance T1 structural scan before and after five weeks of standard TMS treatment to the left dorsolateral prefrontal cortex. Twenty-seven healthy volunteer (HVs) subjects had the same brain MRI acquisition. Voxel-based morphometry was performed using high dimensional non-linear diffusomorphic anatomical registration (DARTEL). RESULTS Six clusters of gray matter volume (GMV) that were lower in pre-treatment MRIs of depressed subjects than in HVs. GMV in four of these regions increased in MDD after TMS treatment by 3.5-11.2%. The four brain regions that changed with treatment were centered in the left anterior cingulate cortex, the left insula, the left superior temporal gyrus and the right angular gyrus. Increases in the anterior cingulate GMV with TMS correlated with improvement in depression severity. CONCLUSIONS To our knowledge, this is the first study of brain structural changes during TMS treatment of depression. The affected brain areas are involved in cognitive appraisal, decision-making and subjective experience of emotion. These effects may have potential relevance for the antidepressant action of TMS.
Collapse
Affiliation(s)
- Martin J Lan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA.
| | - Binod Thapa Chhetry
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medical College, USA; Fell Family Brain and Mind Research Institute, Weill Cornell Medical College, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | - Marc Dubin
- Department of Psychiatry, Weill Cornell Medical College, USA; Fell Family Brain and Mind Research Institute, Weill Cornell Medical College, USA
| |
Collapse
|
30
|
Rutagarama O, Gelaye B, Tadesse MG, Lemma S, Berhane Y, Williams MA. Risk of Common Mental Disorders in Relation to Symptoms of Obstructive Sleep Apnea Syndrome among Ethiopian College Students. JOURNAL OF SLEEP DISORDERS-- TREATMENT & CARE 2016; 4. [PMID: 26925424 DOI: 10.4172/2325-9639.1000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The Berlin and Epworth Sleepiness Scale (ESS) are simple, validated, and widely used questionnaires designed to assess symptoms of obstructive sleep apnea syndrome (OSAS) a common but often unrecognized cause of morbidity and mortality. METHODS A cross-sectional study was conducted among 2,639 college students to examine the extent to which symptoms of OSAS are associated with the odds of common mental disorders (CMDs). The General Health Questionnaire (GHQ-12) was used to evaluate the presence of CMDs while the Berlin and ESS were used to assess high-risk for obstructive sleep apnea (OSA) and excessive daytime sleepiness, respectively. Logistic regression procedures were used to derive odds ratios (OR) and 95% confidence intervals (CI) assessing the independent and joint associations of high-risk for OSA and excessive daytime sleepiness with odds of CMDs. RESULTS Approximately 19% of students had high-risk for OSA while 26.4% had excessive daytime sleepiness. Compared to students without high-risk for OSA and without excessive daytime sleepiness (referent group), students with excessive daytime sleepiness only (OR=2.01; 95%CI: 1.60-2.52) had increased odds of CMDs. The odds of CMDs for students with high-risk OSA only was 1.26 (OR=1.26; 95%CI 0.94-1.68). Students with both high-risk for OSA and excessive daytime sleepiness, compared to the referent group, had the highest odds of CMDs (OR=2.45; 95%CI: 1.69-3.56). CONCLUSION Our findings indicate that symptoms of OSAS are associated with increased risk of CMDs. These findings emphasize the comorbidity of sleep disorders and CMDs and suggest that there may be benefits to investing in educational programs that extend the knowledge of sleep disorders in young adults.
Collapse
Affiliation(s)
- Ornella Rutagarama
- Department of Epidemiology, Harvard T. H. Chan School of Public Health Multidisciplinary International Research Training Program, Boston, MA, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T. H. Chan School of Public Health Multidisciplinary International Research Training Program, Boston, MA, USA
| | - Mahlet G Tadesse
- Department of Epidemiology, Harvard T. H. Chan School of Public Health Multidisciplinary International Research Training Program, Boston, MA, USA; Department of Mathematics & Statistics, Georgetown University, Washington, DC, USA
| | | | - Yemane Berhane
- Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | - Michelle A Williams
- Department of Epidemiology, Harvard T. H. Chan School of Public Health Multidisciplinary International Research Training Program, Boston, MA, USA
| |
Collapse
|
31
|
Dawson GR. Experimental Medicine in Psychiatry New Approaches in Schizophrenia, Depression and Cognition. Curr Top Behav Neurosci 2016; 28:475-497. [PMID: 27418068 DOI: 10.1007/7854_2015_5016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of experimental medicine studies to bridge the gap between Phase 1 and 2 drug trials and so to enhance translation of basic neuroscience studies using experimental animals to the clinic is proposed. Illustrative examples are provided for affective disorders and schizophrenia in relation also to cognitive dysfunction.
Collapse
Affiliation(s)
- Gerard R Dawson
- P1vital LTD, Manor House, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, UK.
| |
Collapse
|
32
|
Impact of monoamine-related gene polymorphisms on hippocampal volume in treatment-resistant depression. Acta Neuropsychiatr 2015; 27:353-61. [PMID: 25990886 DOI: 10.1017/neu.2015.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In major depressive disorder (MDD), single nucleotide polymorphisms (SNPs) in monoaminergic genes may impact disease susceptibility, treatment response, and brain volume. The objective of this study was to examine the effect of such polymorphisms on hippocampal volume in patients with treatment-resistant MDD and healthy controls. Candidate gene risk alleles were hypothesised to be associated with reductions in hippocampal volume. METHODS A total of 26 outpatients with treatment-resistant MDD and 27 matched healthy controls underwent magnetic resonance imaging and genotyping for six SNPs in monoaminergic genes [serotonin transporter (SLC6A4), norepinephrine transporter (SLC6A2), serotonin 1A and 2A receptors (HTR1A and HTR2A), catechol-O-methyltransferase (COMT), and brain-derived neurotrophic factor (BDNF)]. Hippocampal volume was estimated using an automated segmentation algorithm (FreeSurfer). RESULTS Hippocampal volume did not differ between patients and controls. Within the entire study sample irrespective of diagnosis, C allele-carriers for both the NET-182 T/C [rs2242446] and 5-HT1A-1019C/G [rs6295] polymorphisms had smaller hippocampal volumes relative to other genotypes. For the 5-HTTLPR (rs25531) polymorphism, there was a significant diagnosis by genotype interaction effect on hippocampal volume. Among patients only, homozygosity for the 5-HTTLPR short (S) allele was associated with smaller hippocampal volume. There was no association between the 5-HT2A, COMT, and BDNF SNPs and hippocampal volume. CONCLUSION The results indicate that the volume of the hippocampus may be influenced by serotonin- and norepinephrine-related gene polymorphisms. The NET and 5-HT1A polymorphisms appear to have similar effects on hippocampal volume in patients and controls while the 5-HTTLPR polymorphism differentially affects hippocampal volume in the presence of depression.
Collapse
|
33
|
Chung JK, Plitman E, Nakajima S, Chakravarty MM, Caravaggio F, Takeuchi H, Gerretsen P, Iwata Y, Patel R, Mulsant BH, Graff-Guerrero A. Depressive Symptoms and Small Hippocampal Volume Accelerate the Progression to Dementia from Mild Cognitive Impairment. J Alzheimers Dis 2015; 49:743-54. [DOI: 10.3233/jad-150679] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jun Ku Chung
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Eric Plitman
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, PQ, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Fernando Caravaggio
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, PQ, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Benoit H. Mulsant
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Abstract
Treatment-resistant depression (TRD) lacks consensus regarding its definition, despite being common in clinical practice. This study was designed to identify factors contributing to TRD in patients diagnosed with a major depressive disorder. Patients were grouped into "low," "medium," and "high" treatment-resistant (TR) groups based on the number of medications that had been prescribed for their depression. We identified a number of factors linked to TRD. The high TR group was generally older, had a longer depressive episode duration, a higher number of comorbid medical and anxiety disorders, a lower education, and were less likely to be in full-time employment. They also reported less trait irritability and were more likely to view medication as being a contributor to their current depression. Some differences between non-melancholic and melancholic subsets were evident and point to the benefits in research on TRD analyzing the two diagnostic groups separately. The most striking finding was benzodiazepine use, which was significantly more common in the high TR group and within both the melancholic and non-melancholic subsets. Some potential explanations for this finding are offered.
Collapse
|
35
|
Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD). PLoS One 2015; 10:e0132958. [PMID: 26186455 PMCID: PMC4506147 DOI: 10.1371/journal.pone.0132958] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/21/2015] [Indexed: 12/19/2022] Open
Abstract
The application of machine learning techniques to psychiatric neuroimaging offers the possibility to identify robust, reliable and objective disease biomarkers both within and between contemporary syndromal diagnoses that could guide routine clinical practice. The use of quantitative methods to identify psychiatric biomarkers is consequently important, particularly with a view to making predictions relevant to individual patients, rather than at a group-level. Here, we describe predictions of treatment-refractory depression (TRD) diagnosis using structural T1-weighted brain scans obtained from twenty adult participants with TRD and 21 never depressed controls. We report 85% accuracy of individual subject diagnostic prediction. Using an automated feature selection method, the major brain regions supporting this significant classification were in the caudate, insula, habenula and periventricular grey matter. It was not, however, possible to predict the degree of ‘treatment resistance’ in individual patients, at least as quantified by the Massachusetts General Hospital (MGH-S) clinical staging method; but the insula was again identified as a region of interest. Structural brain imaging data alone can be used to predict diagnostic status, but not MGH-S staging, with a high degree of accuracy in patients with TRD.
Collapse
|
36
|
Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci 2015; 265:321-9. [PMID: 25409655 DOI: 10.1007/s00406-014-0562-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022]
Abstract
Disturbances of glutamatergic neurotransmission and mononuclear phagocyte system activation have been described uni- and bipolar depression (UD/BD). Linking the glutamate and immune hypotheses of depression, quinolinic acid (QUIN) is synthesized by activated microglia and acts as an endogenous N-methyl-D-aspartate glutamate receptor (NMDA-R) agonist with neurotoxic properties. Recently, we observed an increased microglial QUIN expression in the subgenual and supracallosal, but not in the pregenual part of the anterior cingulate cortex in postmortem brains of suicide cases with severe depression. Since several hints point to a role of the hippocampus in depression, we extended our study and addressed the question whether microglial QUIN is also changed in subregions of the hippocampus (CA1 and CA2/3 areas) in these patients. Postmortem brains of 12 acutely depressed patients (UD, n = 6; BD, n = 6) and 10 neuropsychiatric healthy age- and gender-matched control subjects were analyzed using QUIN-immunohistochemistry. Hippocampal volumes were determined in order to assess possible neurotoxic or neurodegenerative aspects. Microglial QUIN expression in the whole group of depressed patients was either comparable (left CA1, right CA2/3) or decreased (right CA1: p = 0.004, left CA2/3: p = 0.044) relative to controls. Post hoc tests showed that QUIN was reduced both in UD and BD in the right CA1 field (UD, p = 0.048; BD, p = 0.031). No loss of hippocampal volume was detected. Our data indicate that UD and BD are associated with a local reduction in QUIN-immunoreactive microglia in the hippocampus and underline the importance of the NMDA-R signaling in depressive disorders.
Collapse
|
37
|
Wang S, Ren H, Xu J, Yu Y, Han S, Qiao H, Cheng S, Xu C, An S, Ju B, Yu C, Wang C, Wang T, Yang Z, Taylor EW, Zhao L. Diminished serum repetin levels in patients with schizophrenia and bipolar disorder. Sci Rep 2015; 5:7977. [PMID: 25613293 PMCID: PMC4303898 DOI: 10.1038/srep07977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Repetin (RPTN) protein is a member of S100 family and is known to be expressed in the normal epidermis. Here we show that RPTN is ubiquitously expressed in both mouse and human brain, with relatively high levels in choroid plexus, hippocampus and prefrontal cortex. To investigate the expression of RPTN in neuropsychiatric disorders, we determined serum levels of RPTN in patients with schizophrenia (n = 88) or bipolar disorder (n = 34) and in chronic psychostimulant users (n = 91). We also studied its expression in a mouse model of chronic unpredictable mild stress (CUMS). The results showed that serum RPTN levels were significantly diminished in patients with schizophrenia and bipolar disorder or in psychostimulant users, compared with healthy subjects (n = 115) or age-matched controls (n = 92) (p < 0.0001). In CUMS mice, RPTN expression in hippocampus and prefrontal cortex was reduced with progression of the CUMS procedure; the serum RPTN level remained unchanged. Since CUMS is a model for depression and methamphetamine (METH) abuse induced psychosis recapitulates many of the psychotic symptoms of schizophrenia, the results from this study may imply that RPTN plays a potential role in emotional and cognitive processing; its decrease in serum may indicate its involvement in the pathogenesis of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huixun Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Xu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Yu
- Department of Clinical Chemistry, Xi'an mental health center, Xi'an 710061, China
| | - Shuiping Han
- Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Qiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shaoli Cheng
- Center for Experimental Morphology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shucheng An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bomiao Ju
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chengyuan Yu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chanyuan Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Ethan Will Taylor
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Lijun Zhao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
38
|
Tae WS. Regional Gray Matter Volume Reduction Associated with Major Depressive Disorder: A Voxel-Based Morphometry. ACTA ACUST UNITED AC 2015. [DOI: 10.13104/imri.2015.19.1.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Woo-Suk Tae
- Neuroimaging Lab., Neuroscience Research Institute, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
39
|
Dusi N, Barlati S, Vita A, Brambilla P. Brain Structural Effects of Antidepressant Treatment in Major Depression. Curr Neuropharmacol 2015; 13:458-65. [PMID: 26412065 PMCID: PMC4790407 DOI: 10.2174/1570159x1304150831121909] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/16/2014] [Accepted: 12/19/2015] [Indexed: 01/26/2023] Open
Abstract
Depressive disorder is a very frequent and heterogeneous syndrome. Structural imaging techniques offer a useful tool in the comprehension of neurobiological alterations that concern depressive disorder. Altered brain structures in depressive disorder have been particularly located in the prefrontal cortex (medial prefrontal cortex and orbitofrontal cortex, OFC) and medial temporal cortex areas (hippocampus). These brain areas belong to a structural and functional network related to cognitive and emotional processes putatively implicated in depressive symptoms. These volumetric alterations may also represent biological predictors of response to pharmacological treatment. In this context, major findings of magnetic resonance (MR) imaging, in relation to treatment response in depressive disorder, will here be presented and discussed.
Collapse
Affiliation(s)
| | | | | | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Università degli Studi di Milano, U.O.C. Psichiatria, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35 - 20122 Milano.
| |
Collapse
|
40
|
Liu M, Li J, Dai P, Zhao F, Zheng G, Jing J, Wang J, Luo W, Chen J. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress 2015; 18:96-106. [PMID: 25472821 DOI: 10.3109/10253890.2014.995085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic stress is considered to be a major risk factor in the development of psychopathological syndromes in humans. Cognitive impairments and long-term potentiation (LTP) impairments are increasingly recognized as major components of depression, anxiety disorders and other stress-related chronic psychological illnesses. It seems timely to systematically study the potentially underlying neurobiological mechanisms of altered cognitive and synaptic plasticity in the course of chronic stress. In the present study, a rat model of chronic unpredictable stress (CUS) induced a cognitive impairment in spatial memory in the Morris water maze (MWM) test and a hippocampal LTP impairment. CUS also induced hippocampal microglial activation and attenuated phosphorylation of glutamate receptor 1 (GluR1 or GluA1). Moreover, chronic treatment with the selective microglial activation blocker, minocycline (120 mg/kg per day), beginning 3 d before CUS treatment and continuing through the behavioral testing period, prevented the CUS-induced impairments of spatial memory and LTP induction. Additional studies showed that minocycline-induced inhibition of microglia activation was associated with increased phosphorylation of GluR1. These results suggest that hippocampal microglial activation modulates the level of GluR1 phosphorylation and might play a causal role in CUS-induced cognitive and LTP disturbances.
Collapse
Affiliation(s)
- Mingchao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University , Xi'an , China and
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in Major Depressive Disorder: a voxel-based morphometry study. J Affect Disord 2014; 169:179-87. [PMID: 25200096 DOI: 10.1016/j.jad.2014.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Voxel-based morphometry (VBM) has demonstrated structural brain changes between patients with Major Depressive Disorder (MDD) and healthy individuals. The initial response to antidepressants is crucial to predict prognosis in the treatment of MDD. The aim of the present study was to investigate gray matter abnormalities predicting antidepressant responsiveness and the relationships between volumetric differences and clinical/cognitive traits in MDD patients. METHODS Fifty MDD patients who received 8 week period antidepressant treatment and 29 healthy controls participated in this study. VBM was applied to assess structural changes between MDD groups and control group. Neuropsychological tests were conducted on all participants. RESULTS Both treatment responsive and non-responsive patients showed a significant volume reduction of the left insular, but only non-responsive patients had decreased volume in the right superior frontal gyrus compared to healthy controls. The comparison between treatment responsive and non-responsive patient groups demonstrated a significant difference in gray matter volume in the lingual gyrus. The larger volume of lingual gryus predicted early antidepressant response, which was attributable to better performance in neuropsychological tests. LIMITATION This study included a small sample size and the patients received various antidepressants and benzodiazepines. CONCLUSION Our findings suggest that the patients who responded poorly to antidepressants were morphologically and cognitively impaired, whereas the treatment responsive patients showed less structural changes and relatively preserved cognitive functions. The lingual gyrus may be a possible candidate region to predict antidepressant responsiveness and maintained cognition in MDD.
Collapse
|
42
|
Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation 2014; 11:151. [PMID: 25178630 PMCID: PMC4156619 DOI: 10.1186/s12974-014-0151-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation has been shown to contribute to the development of a wide variety of disorders by means of a number of proposed mechanisms. Depression and cognitive impairment are two such disorders which may share a closely linked inflammatory etiology. The ability of inflammatory mediators to alter the activity of enzymes, from key metabolic pathways, may help explain the connection between these disorders. The chronic up-regulation of the kynurenine pathway results in an imbalance in critical neuroactive compounds involving the reduction of tryptophan and elevation of tryptophan metabolites. Such imbalances have established implications in both depression and cognitive impairment. This may implicate the immune system as a potential therapeutic target in the treatment of these disorders. The most common treatment modalities currently utilized, involve drug interventions which act on downstream targets. Such treatments help to reestablish protein balances, but fail to treat the inflammatory basis of the disorder. The use of anti-inflammatory interventions, such as regular exercise, may therefore, contribute to the effectiveness of current drug interventions in the treatment of both depression and cognitive impairment.
Collapse
Affiliation(s)
- David J Allison
- Department of Kinesiology, Faculty of Applied Health Science, Brock University, 500 Glenridge Ave, St, Catharines L2S 3A1, ON, Canada.
| | | |
Collapse
|
43
|
Ping G, Qian W, Song G, Zhaochun S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice. Pharmacol Biochem Behav 2014; 124:5-12. [DOI: 10.1016/j.pbb.2014.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 01/12/2023]
|
44
|
Ramezani M, Johnsrude I, Rasoulian A, Bosma R, Tong R, Hollenstein T, Harkness K, Abolmaesumi P. Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression. Neuroimage Clin 2014; 6:145-55. [PMID: 25379426 PMCID: PMC4215529 DOI: 10.1016/j.nicl.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) has previously been linked to structural changes in several brain regions, particularly in the medial temporal lobes (Bellani, Baiano, Brambilla, 2010; Bellani, Baiano, Brambilla, 2011). This has been determined using voxel-based morphometry, segmentation algorithms, and analysis of shape deformations (Bell-McGinty et al., 2002; Bergouignan et al., 2009; Posener et al., 2003; Vasic et al., 2008; Zhao et al., 2008): these are methods in which information related to the shape and the pose (the size, and anatomical position and orientation) of structures is lost. Here, we incorporate information about shape and pose to measure structural deformation in adolescents and young adults with and without depression (as measured using the Beck Depression Inventory and Diagnostic and Statistical Manual of Mental Disorders criteria). As a hypothesis-generating study, a significance level of p < 0.05, uncorrected for multiple comparisons, was used, so that subtle morphological differences in brain structures between adolescent depressed individuals and control participants could be identified. We focus on changes in cortical and subcortical temporal structures, and use a multi-object statistical pose and shape model to analyze imaging data from 16 females (aged 16-21) and 3 males (aged 18) with early-onset MDD, and 25 female and 1 male normal control participants, drawn from the same age range. The hippocampus, parahippocampal gyrus, putamen, and superior, inferior and middle temporal gyri in both hemispheres of the brain were automatically segmented using the LONI Probabilistic Brain Atlas (Shattuck et al., 2008) in MNI space. Points on the surface of each structure in the atlas were extracted and warped to each participant's structural MRI. These surface points were analyzed to extract the pose and shape features. Pose differences were detected between the two groups, particularly in the left and right putamina, right hippocampus, and left and right inferior temporal gyri. Shape differences were detected between the two groups, particularly in the left hippocampus and in the left and right parahippocampal gyri. Furthermore, pose measures were significantly correlated with BDI score across the whole (clinical and control) sample. Since the clinical participants were experiencing their very first episodes of MDD, morphological alteration in the medial temporal lobe appears to be an early sign of MDD, and is unlikely to result from treatment with antidepressants. Pose and shape measures of morphology, which are not usually analyzed in neuromorphometric studies, appear to be sensitive to depressive symptomatology.
Collapse
Affiliation(s)
- Mahdi Ramezani
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ingrid Johnsrude
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Behavioural Sciences and Learning, Linnaeus Centre for Hearing and Deafness, Linköping University, Linköping SE-581 83, Sweden
| | - Abtin Rasoulian
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachael Bosma
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ryan Tong
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Tom Hollenstein
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kate Harkness
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Purang Abolmaesumi
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
45
|
Atkinson L, Sankar A, Adams TM, Fu CHY. Recent Advances in Neuroimaging of Mood Disorders: Structural and Functional Neural Correlates of Depression, Changes with Therapy, and Potential for Clinical Biomarkers. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40501-014-0022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Charlton RA, Lamar M, Zhang A, Yang S, Ajilore O, Kumar A. White-matter tract integrity in late-life depression: associations with severity and cognition. Psychol Med 2014; 44:1427-37. [PMID: 24041297 PMCID: PMC4310501 DOI: 10.1017/s0033291713001980] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although significant changes in both gray and white matter have been noted in late-life depression (LLD), the pathophysiology of implicated white-matter tracts has not been fully described. In this study we examined the integrity of specific white-matter tracts in LLD versus healthy controls (HC). METHOD Participants aged ⩾60 years were recruited from the community. The sample included 23 clinically diagnosed individuals with LLD and 23 HC. White-matter integrity metrics [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)] were calculated in the bilateral cingulum and uncinate fasciculus. Depression severity was measured using the Center for Epidemiological Studies Depression Scale (CESD). Composite scores for learning and memory and executive function were created using standardized neuropsychological assessments. RESULTS White-matter integrity was lower in LLD versus HC in the bilateral cingulum and right uncinate fasciculus (p⩽0.05). In the whole sample, depression severity correlated with integrity in the bilateral cingulum and right uncinate fasciculus (p ⩽0.05). In patients, depression severity correlated with the integrity of the left uncinate fasciculus (p = 0.03); this tract also correlated with executive function (p = 0.02). Among HC, tract integrity did not correlate with depression scores; however, learning and memory correlated with integrity of the bilateral uncinate fasciculus and bilateral cingulum; executive function correlated with the right uncinate and left cingulum (p ⩽0.05). CONCLUSIONS White-matter tract integrity was lower in LLD than in HC and was associated with depression severity across all participants. Tract integrity was associated with cognition in both groups but more robustly among HC.
Collapse
Affiliation(s)
- R. A. Charlton
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - M. Lamar
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - A. Zhang
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - S. Yang
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - O. Ajilore
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| | - A. Kumar
- Department of Psychiatry, University of Illinois at Chicago, IL, USA
| |
Collapse
|
47
|
Abstract
The last decade has witnessed a significant shift on our understanding of the relationship between psychiatric disorders and epilepsy. While traditionally psychiatric disorders were considered as a complication of the underlying seizure disorder, new epidemiologic data, supported by clinical and experimental research, have suggested the existence of a bidirectional relation between the two types of conditions: not only are patients with epilepsy at greater risk of experiencing a psychiatric disorder, but patients with primary psychiatric disorders are at greater risk of developing epilepsy. Do these data suggest that some of the pathogenic mechanisms operant in psychiatric comorbidities play a role in epileptogenesis? The aim of this article is to review the epidemiologic data that demonstrate that primary psychiatric disorders are more frequent in people who develop epilepsy, before the onset of the seizure disorder than among controls. The next question looks at the available data of pathogenic mechanisms of primary mood disorders and their potential for facilitating the development and/or exacerbation in the severity of epileptic seizures. Finally, we review data derived from experimental studies in animal models of depression and epilepsy that support a potential role of pathogenic mechanisms of mood disorders in the development of epileptic seizures and epileptogenesis. The data presented in this article do not yet establish conclusive evidence of a pathogenic role of psychiatric comorbidities in epileptogenesis, but raise important research questions that need to be investigated in experimental, clinical, and population-based epidemiologic research studies.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW, 14th Street, Room 1324, Miami, FL, 33136, USA,
| | | | | |
Collapse
|
48
|
Aizenstein HJ, Khalef A, Walker SE, Andreescu C. Magnetic resonance imaging predictors of treatment response in late-life depression. J Geriatr Psychiatry Neurol 2014; 27:24-32. [PMID: 24381231 PMCID: PMC4103612 DOI: 10.1177/0891988713516541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In older adults, depression not only results in more years lived with disability than any other disease but it also carries additional risks of suicide, medical comorbidities, and family caregiving burden. Because it can take many months to identify an effective treatment regimen, it is of utmost importance to shorten the window of time and identify early on what medications and dosages will work effectively for individuals having depression. Late-life depression (LLD) has been associated with greater burden of age-related changes (eg, atrophy, white matter ischemic changes, and functional connectivity). Depression in midlife has been shown to alter affective reactivity and regulation, and functional magnetic resonance imaging (fMRI) studies in LLD have replicated the same abnormalities. Effective treatment can normalize these alterations. This article provides a review of the current literature using structural and functional neuroimaging to identify MRI predictors of treatment response in LLD. The majority of the literature on structural MRI has focused on the vascular depression hypothesis, and studies support the view that loss of brain volume and white matter integrity was associated with poorer treatment outcomes. Studies using fMRI have reported that lower task-based activity in the prefrontal cortex and limbic regions was associated with poorer outcome. These imaging markers may be integrated into clinical decision making to attain better treatment outcomes in the future.
Collapse
Affiliation(s)
- Howard J. Aizenstein
- University of Pittsburgh, Department of Psychiatry.,Geriatric Psychiatry Neuroimaging Lab, University of Pittsburgh
| | | | - Sarah E. Walker
- Geriatric Psychiatry Neuroimaging Lab, University of Pittsburgh
| | - Carmen Andreescu
- University of Pittsburgh, Department of Psychiatry.,Geriatric Psychiatry Neuroimaging Lab, University of Pittsburgh
| |
Collapse
|
49
|
Allan CL, Zsoldos E, Ebmeier KP. Imaging and neurobiological changes in late-life depression. Br J Hosp Med (Lond) 2014; 75:25-30. [DOI: 10.12968/hmed.2014.75.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Charlotte L Allan
- Academic Clinical Lecturer, University of Oxford, Warneford Hospital, Oxford OX3 7JX
| | - Enikő Zsoldos
- Research Assistant, University of Oxford, Warneford Hospital, Oxford OX3 7JX
| | - Klaus P Ebmeier
- Professor of Old Age Psychiatry in the Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX
| |
Collapse
|
50
|
Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, Williams S, Deakin JFW, Anderson IM. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 2013; 18:1265-72. [PMID: 23128153 DOI: 10.1038/mp.2012.150] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Abstract
Reduced hippocampal volume has been reported in depression and may be involved in the aetiology of depressive symptoms and vulnerability to depressive relapse. Neuroplasticity following antidepressant drug treatment in the hippocampus has been demonstrated in animal models but adaptive changes after such treatment have not been shown in humans. In this study, we determined whether grey matter loss in the hippocampus in depression (1) is present in medication-free depressed (2) changes in response to antidepressant treatment and (3) is present as a stable trait in medication-free remitted patients. Sixty-four medication-free unipolar depressed patients: 39 currently depressed and 25 in remission, and 66 healthy controls (HC) underwent structural magnetic resonance imaging in a cross-sectional and longitudinal design. Thirty-two currently depressed participants were then treated with the antidepressant citalopram for 8 weeks. Adherence to treatment was evaluated by measuring plasma citalopram concentration. We measured regional variation in grey matter concentration by using voxel-based morphometry-Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra. Patients with current depression had bilaterally reduced grey matter in the hippocampus compared with HC and untreated patients in stable remission with the latter groups not differing. An increase in grey matter was observed in the hippocampus following treatment with citalopram in currently depressed patients. Grey matter reduction in the hippocampus appears specific to the depressed state and is a potential biomarker for a depressive episode.
Collapse
Affiliation(s)
- D Arnone
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|