1
|
Haghshomar M, Mirghaderi SP, Shobeiri P, James A, Zarei M. White matter abnormalities in paediatric obsessive-compulsive disorder: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2023; 17:343-366. [PMID: 36935464 PMCID: PMC10195745 DOI: 10.1007/s11682-023-00761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Microstructural alterations in white matter are evident in obsessive-compulsive disorder (OCD) both in adult and paediatric populations. Paediatric patients go through the process of maturation and thus may undergo different pathophysiology than adult OCD. Findings from studies in paediatric obsessive-compulsive disorder have been inconsistent, possibly due to their small sample size or heterogeneous populations. The aim of this review is to provide a comprehensive overview of white matter structures in paediatric obsessive-compulsive disorder and their correlation with clinical features. Based on PRISMA guidelines, we performed a systematic search on diffusion tensor imaging studies that reported fractional anisotropy, mean diffusivity, radial diffusivity, or axial diffusivity alterations between paediatric patients with obsessive-compulsive disorder and healthy controls using voxel-based analysis, or tract-based spatial statistics. We identified fifteen relevant studies. Most studies reported changes predominantly in the corpus callosum, cingulum, arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, forceps minor and major, and the cerebellum in paediatric obsessive-compulsive disorder. These alterations included increased and decreased fractional anisotropy and radial diffusivity, and increased mean and axial diffusivity in different white matter tracts. These changes were associated with obsessive-compulsive disorder symptoms. Moreover, specific genetic polymorphisms were linked with cerebellar white matter changes in paediatric obsessive-compulsive disorder. White matter changes are widespread in paediatric OCD patients. These changes are often associated with symptoms however there are controversies in the direction of changes in some tracts.
Collapse
Affiliation(s)
- Maryam Haghshomar
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parnian Shobeiri
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Anthony James
- Highfield Family and Adolescent Unit, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
- Departments of Neurology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Tao B, Xiao Y, Cao H, Zhang W, Yang C, Lencer R, Gong Q, Lui S. Characteristics of the corpus callosum in chronic schizophrenia treated with clozapine or risperidone and those never-treated. BMC Psychiatry 2021; 21:538. [PMID: 34715831 PMCID: PMC8556985 DOI: 10.1186/s12888-021-03552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The corpus callosum (CC) deficits have been well documented in chronic schizophrenia. However, the long-term impacts of antipsychotic monotherapies on callosal anatomy remain unclear. This cross-sectional study sought to explore micro- and macro-structural characteristics of the CC in never-treated patients and those with long-term mono-antipsychotic treatment. METHODS The study included 23 clozapine-treated schizophrenia patients (CT-SCZ), 19 risperidone-treated schizophrenia patients (RT-SCZ), 23 never-treated schizophrenia patients (NT-SCZ), and 35 healthy controls (HCs). High resolution structural images and diffusion tensor imaging (DTI) data for each participant were obtained via a 3.0 T MR scanner. FreeSurfer was used to examine the volumes and fractional anisotropy (FA) values of the CC for each participant. RESULTS There were significant deficits in the total and sub-regional CC volume and white matter integrity in NT-SCZ in comparison with healthy subjects. Compared with NT-SCZ, both CT-SCZ and RT-SCZ showed significantly increased FA values in the anterior CC region, while only RT-SCZ showed significantly increased volume in the mid-anterior CC region. Moreover, the volume of the mid-anterior CC region was significantly smaller in CT-SCZ compared to HCs. No correlations of clinical symptoms with callosal metrics were observed in schizophrenia patients. CONCLUSIONS Our findings provide insight into micro- and macro-structural characteristics of the CC in chronic schizophrenia patients with or without antipsychotics. These results suggest that the pathology itself is responsible for cerebral abnormalities in schizophrenia and that chronic exposure to antipsychotics may have an impact on white matter structure of schizophrenia patients, especially in those with risperidone treatment.
Collapse
Affiliation(s)
- Bo Tao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- grid.250903.d0000 0000 9566 0634Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY USA ,grid.440243.50000 0004 0453 5950Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY USA
| | - Wenjing Zhang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- grid.4562.50000 0001 0057 2672Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xuexiang, Chengdu, 610041, China. .,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Tao B, Xiao Y, Yang B, Zeng J, Zhang W, Hu N, Yang C, Lencer R, Gong Q, Sweeney JA, Lui S. Morphological alterations of the corpus callosum in antipsychotic-naive first-episode schizophrenia before and 1-year after treatment. Schizophr Res 2021; 231:115-121. [PMID: 33839369 DOI: 10.1016/j.schres.2021.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The corpus callosum (CC) is known to be altered in patients with schizophrenia. However, its morphologic characteristics are less well studied in treatment-naive first-episode schizophrenia patients, as is the effect of antipsychotic treatment on this structure. METHODS T-1 weighted MRI scans were obtained from 160 antipsychotic-naïve first-episode schizophrenia patients (AN-FES) and 155 healthy controls (HCs) before treatment initiation. Among the patients, forty-four were available for follow-up studies after one year of antipsychotic treatment, and were divided into good-outcome (n = 31) and poor-outcome subgroups (n = 13) based on whether there was a 50% reduction in Positive and Negative Symptom Scale (PANSS) total scores from baseline. A computer algorithm was applied to automatically identify the mid-sagittal plane (MSP) and obtain morphological measurement parameters of the CC. RESULTS Compared with HCs, AN-FES patients showed a significant reduction of thickness in the posterior midbody of the CC. This deficit was correlated with severity of negative symptoms. After one year of antipsychotic treatment, there was no significant change in CC morphological measurements in schizophrenia patients, nor was there a significant difference of CC morphological measurements between good-outcome and poor-outcome subgroups at baseline or at 1-year follow-up. CONCLUSION Thickness of the posterior midbody of the CC is reduced in the early course of schizophrenia before treatment. This alteration was not affected by antipsychotic treatment and was unrelated to treatment outcome at 1-year.
Collapse
Affiliation(s)
- Bo Tao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Beisheng Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Prendergast DM, Karlsgodt KH, Fales CL, Ardekani BA, Szeszko PR. Corpus callosum shape and morphology in youth across the psychosis Spectrum. Schizophr Res 2018; 199:266-273. [PMID: 29656909 DOI: 10.1016/j.schres.2018.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
The corpus callosum is the largest white matter tract in the human brain connecting and coordinating homologous regions of the right and left hemispheres and has been strongly implicated in the pathogenesis of psychosis. We investigated corpus callosum morphology in a large community cohort of 917 individuals (aged 8-21), including 267 endorsing subsyndromal or threshold psychotic symptoms (207 on the psychosis spectrum and 60 with limited psychosis based on previously published criteria) and 650 non-psychotic volunteers. We used a highly reliable and previously published algorithm to automatically identify the midsagittal plane and to align the corpus callosum along the anterior and posterior commissures for segmentation, thereby eliminating these sources of error variance in dependent measures, which included perimeter, length, mean thickness and shape (circularity). The parcellation scheme divided the corpus callosum into 7 subregions that consisted of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium. Both individuals endorsing psychotic symptoms and those with limited psychosis had significantly (p<.05) smaller area and lower thickness measures compared to healthy volunteers, but did not differ significantly from each other. Findings were relatively widespread indicating a relatively global effect not circumscribed to any particular corpus callosum subregion. These data are consistent with the hypothesis that corpus callosum abnormalities may be evident early in the course of illness and predate the onset of frank psychosis. Given that these measures can be easily obtained and are highly reliable they may assist in the identification of individuals at future risk for psychosis.
Collapse
Affiliation(s)
| | - K H Karlsgodt
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - C L Fales
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - B A Ardekani
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - P R Szeszko
- James J. Peters VA Medical Center, Mental Health Patient Care Center and Mental Illness Research Education Clinical Center (MIRECC), Bronx, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|