1
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 PMCID: PMC11575466 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Wirth D, Paul MD, Pasquale EB, Hristova K. Direct quantification of ligand-induced lipid and protein microdomains with distinctive signaling properties. CHEMSYSTEMSCHEM 2022; 4:e202200011. [PMID: 36337751 PMCID: PMC9634703 DOI: 10.1002/syst.202200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Lipid rafts are ordered lipid domains that are enriched in saturated lipids, such as the ganglioside GM1. While lipid rafts are believed to exist in cells and to serve as signaling platforms through their enrichment in signaling components, they have not been directly observed in the plasma membrane without treatments that artificially cluster GM1 into large lattices. Here, we report that microscopic GM1-enriched domains can form, in the plasma membrane of live mammalian cells expressing the EphA2 receptor tyrosine kinase in response to its ligand ephrinA1-Fc. The GM1-enriched microdomains form concomitantly with EphA2-enriched microdomains. To gain insight into how plasma membrane heterogeneity controls signaling, we quantify the degree of EphA2 segregation and study initial EphA2 signaling steps in both EphA2-enriched and EphA2-depleted domains. By measuring dissociation constants, we demonstrate that the propensity of EphA2 to oligomerize is similar in EphA2-enriched and -depleted domains. However, surprisingly, EphA2 interacts preferentially with its downstream effector SRC in EphA2-depleted domains. The ability to induce microscopic GM1-enriched domains in live cells using a ligand for a transmembrane receptor will give us unprecedented opportunities to study the biophysical chemistry of lipid rafts.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Michael D. Paul
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, CA 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| |
Collapse
|
3
|
McCluskey G, Donaghy C, Morrison KE, McConville J, Duddy W, Duguez S. The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases. J Pers Med 2022; 12:jpm12091418. [PMID: 36143200 PMCID: PMC9501626 DOI: 10.3390/jpm12091418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Dundonald, Belfast BT16 1RH, UK
| | - William Duddy
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence:
| |
Collapse
|
4
|
Yu. Kostina N, Söder D, Haraszti T, Xiao Q, Rahimi K, Partridge BE, Klein ML, Percec V, Rodriguez‐Emmenegger C. Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angew Chem Int Ed Engl 2021; 60:8352-8360. [PMID: 33493389 PMCID: PMC8048596 DOI: 10.1002/anie.202100400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 01/10/2023]
Abstract
The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association.
Collapse
Affiliation(s)
- Nina Yu. Kostina
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Dominik Söder
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Tamás Haraszti
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Qi Xiao
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
- Institute of Computational Molecular ScienceTemple UniversityPhiladelphiaPA19122USA
| | - Khosrow Rahimi
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Benjamin E. Partridge
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
| | - Michael L. Klein
- Institute of Computational Molecular ScienceTemple UniversityPhiladelphiaPA19122USA
| | - Virgil Percec
- Roy & Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA19104-6323USA
| | - Cesar Rodriguez‐Emmenegger
- DWI- Leibniz Institute for Interactive MaterialsInstitute of Technical and Macromolecular Chemistry RWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
5
|
Yu. Kostina N, Söder D, Haraszti T, Xiao Q, Rahimi K, Partridge BE, Klein ML, Percec V, Rodriguez‐Emmenegger C. Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nina Yu. Kostina
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Dominik Söder
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Tamás Haraszti
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
- Institute of Computational Molecular Science Temple University Philadelphia PA 19122 USA
| | - Khosrow Rahimi
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Benjamin E. Partridge
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Michael L. Klein
- Institute of Computational Molecular Science Temple University Philadelphia PA 19122 USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Cesar Rodriguez‐Emmenegger
- DWI- Leibniz Institute for Interactive Materials Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
6
|
Canepa E, Salassi S, de Marco AL, Lambruschini C, Odino D, Bochicchio D, Canepa F, Canale C, Dante S, Brescia R, Stellacci F, Rossi G, Relini A. Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. NANOSCALE 2020; 12:19746-19759. [PMID: 32966489 DOI: 10.1039/d0nr05366j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amphiphilic gold nanoparticles with diameters in the 2-4 nm range are promising as theranostic agents thanks to their spontaneous translocation through cell membranes. This study addresses the effects that these nanoparticles may have on a distinct feature of plasma membranes: lipid lateral phase separation. Atomic force microscopy, quartz crystal microbalance, and molecular dynamics are combined to study the interaction between model neuronal membranes, which spontaneously form ordered and disordered lipid domains, and amphiphilic gold nanoparticles having negatively charged surface functionalization. Nanoparticles are found to interact with the bilayer and form bilayer-embedded ordered aggregates. Nanoparticles also suppress lipid phase separation, in a concentration-dependent fashion. A general, yet simple thermodynamic model is developed to show that the change of lipid-lipid enthalpy is the dominant driving force towards the nanoparticle-induced destabilization of phase separation.
Collapse
Affiliation(s)
- Ester Canepa
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|