1
|
Sharma A, Zalejski J, Bendre SV, Kavrokova S, Hasdemir HS, Ozgulbas DG, Sun J, Pathmasiri KC, Shi R, Aloulou A, Berkley K, Delisle CF, Wang Y, Weisser E, Buweneka P, Pierre-Jacques D, Mukherjee S, Abbasi DA, Lee D, Wang B, Gevorgyan V, Cologna SM, Tajkhorshid E, Nelson ER, Cho W. Cholesterol-targeting Wnt-β-catenin signaling inhibitors for colorectal cancer. Nat Chem Biol 2025:10.1038/s41589-025-01870-y. [PMID: 40240631 DOI: 10.1038/s41589-025-01870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2025] [Indexed: 04/18/2025]
Abstract
Most persons with colorectal cancer (CRC) carry adenomatous polyposis coli (APC) truncation leading to aberrant Wnt-β-catenin signaling; however, effective targeted therapy for them is lacking as the mechanism by which APC truncation drives CRC remains elusive. Here, we report that the cholesterol level in the inner leaflet of the plasma membrane (IPM) is elevated in all tested APC-truncated CRC cells, driving Wnt-independent formation of Wnt signalosomes through Dishevelled (Dvl)-cholesterol interaction. Cholesterol-Dvl interaction inhibitors potently blocked β-catenin signaling in APC-truncated CRC cells and suppressed their viability. Because of low IPM cholesterol level and low Dvl expression and dependence, normal cells including primary colon epithelial cells were not sensitive to these inhibitors. In vivo testing with a xenograft mouse model showed that our inhibitors effectively suppressed truncated APC-driven tumors without causing intestinal toxicity. Collectively, these results suggest that the most common type of CRC could be effectively and safely treated by blocking the cholesterol-Dvl-β-catenin signaling axis.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Julian Zalejski
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Shruti Vijay Bendre
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Simona Kavrokova
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Hale Siir Hasdemir
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Defne Gorgun Ozgulbas
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ruicheng Shi
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ahmed Aloulou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kyli Berkley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Charles F Delisle
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Young Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Erin Weisser
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pawanthi Buweneka
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Sayandeb Mukherjee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Diana A Abbasi
- Department of Neurogenetics and Translational Neuroscience, Rush University, Chicago, IL, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Bo Wang
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mohammadgholi Pour MB, Doudi M, Ahadi AM, Amiri GR. Investigating the interaction of zno nanoparticles with flagellum and fimbriae in multi-drug resistant uropathogenic bacteria encoding fli and fim genes. Braz J Microbiol 2024; 55:2727-2738. [PMID: 39222218 PMCID: PMC11405561 DOI: 10.1007/s42770-024-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Due to the increasing occurrence of drug resistant urinary tract infections (UTI) among children, there is a need to investigate alternative effective treatment protocols such as nanoparticles. Flagella and fimbriae are primary factors contributing the virulence of urinary tract infecting bacteria. The aim of this study was to assess the antibacterial effects of zinc oxide nanoparticles which have been synthesized using both chemical and green methods on multi-drug resistant (MDR) uropathogenic bacteria encoding fli and fim genes and investigating their binding ability to bacterial appendage proteins. A total of 30 urine culture samples were collected from children under 2 years old diagnosed with urinary tract infection. The isolates underwent antibiotic suseptibility assessment and the isolates demonstrating MDR were subjected to molecular amplification of fimG (fimbrial) and fliD and fliT (flagellal) genes. The confirmation of cellular appendages was achieved through silver nitrate staining. The antibacterial efficacy of the synthetized nanoparticles was assessed using the micro and macrodilution methods. The successful binding of nanoparticles to bacterial appendage proteins was confirmed through mobility shift and membrane filter assays. The dimensions of chemically synthesized ZnO nanoparticles and green nanoparticles were measured at 30 nm and 85 nm, respectively, with the exhibition of hexagonal geometries. The nanoparticles synthesized through chemical and green methods exhibited minimum inhibitory concentrations (MIC) of 0.0062-0.025 g/L and 0.3 g/L, respectively. The ability of ZnO nanoparticles to bind bacterial appendage proteins and to combat MDR uropathogenic bacteria are promising for new treatment protocols against UTI in children in future.
Collapse
Affiliation(s)
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran.
| | - Ali Mohammad Ahadi
- Department of Genetics, Shahrekord University, Shahr-e Kord, Chaharmahal and Bakhtiari, Iran
| | - Gholam Reza Amiri
- Department of Basic Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
3
|
Singaram I, Sharma A, Pant S, Lihan M, Park MJ, Pergande M, Buwaneka P, Hu Y, Mahmud N, Kim YM, Cologna S, Gevorgyan V, Khan I, Tajkhorshid E, Cho W. Targeting lipid-protein interaction to treat Syk-mediated acute myeloid leukemia. Nat Chem Biol 2023; 19:239-250. [PMID: 36229686 PMCID: PMC9898191 DOI: 10.1038/s41589-022-01150-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Membrane lipids control the cellular activity of kinases containing the Src homology 2 (SH2) domain through direct lipid-SH2 domain interactions. Here we report development of new nonlipidic small molecule inhibitors of the lipid-SH2 domain interaction that block the cellular activity of their host proteins. As a pilot study, we evaluated the efficacy of lipid-SH2 domain interaction inhibitors for spleen tyrosine kinase (Syk), which is implicated in hematopoietic malignancies, including acute myeloid leukemia (AML). An optimized inhibitor (WC36) specifically and potently suppressed oncogenic activities of Syk in AML cell lines and patient-derived AML cells. Unlike ATP-competitive Syk inhibitors, WC36 was refractory to de novo and acquired drug resistance due to its ability to block not only the Syk kinase activity, but also its noncatalytic scaffolding function that is linked to drug resistance. Collectively, our study shows that targeting lipid-protein interaction is a powerful approach to developing new small molecule drugs.
Collapse
Affiliation(s)
- Indira Singaram
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Loxo Oncology @ Lilly, Louisville, CO, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mi-Jeong Park
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Melissa Pergande
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Pawanthi Buwaneka
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Yusi Hu
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
- College of Chemistry and School of Medicine, Nankai University, Tianjin, P. R. China
| | - Nadim Mahmud
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Stephanie Cologna
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA
| | | | - Irum Khan
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago (UIC), Chicago, IL, USA.
| |
Collapse
|
4
|
Cho W, Berkley K, Sharma A. Lipid Binding of SH2 Domains. Methods Mol Biol 2023; 2705:239-253. [PMID: 37668978 DOI: 10.1007/978-1-0716-3393-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src homology 2 (SH2) domain is a modular protein interaction domain that specifically recognizes the phosphotyrosine (pY) motif of a target molecule. We recently reported that a large majority of human SH2 domains tightly bind membrane lipids, and many show high lipid specificity. Most of them can bind a lipid and the pY motif coincidently because their lipid-binding sites are topologically distinct from pY-binding pockets. Lipid binding of SH2 domain-containing kinases and phosphatases is functionally important because it exerts exquisite spatiotemporal control on protein-protein interaction and cell signaling activities mediated by these proteins. Here, we describe two assays, surface plasmon resonance analysis and fluorescence quenching analysis, which allow quantitative determination of the affinity and specificity of SH2-lipid interaction and high-throughput screening for SH2 domain-lipid-binding inhibitors.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kyli Berkley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of glycosylphosphatidylinositol anchors: a molecular dynamics perspective. Glycobiology 2022; 32:933-948. [PMID: 36197124 PMCID: PMC9620968 DOI: 10.1093/glycob/cwac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Daniel Varon Silva
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Mark Santer
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
6
|
Banerjee P, Lipowsky R, Santer M. Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. J Chem Theory Comput 2020; 16:3889-3903. [PMID: 32392421 PMCID: PMC7303967 DOI: 10.1021/acs.jctc.0c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Reinhard Lipowsky
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Mark Santer
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
7
|
Raghunath G, Dyer RB. Kinetics of Histidine-Tagged Protein Association to Nickel-Decorated Liposome Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12550-12561. [PMID: 31466440 PMCID: PMC6759406 DOI: 10.1021/acs.langmuir.9b01700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nickel-chelating lipids offer a convenient platform for reversible immobilization of histidine-tagged proteins to liposome surfaces. This interaction recently found utility as a model system for studying membrane remodeling triggered by protein crowding. Despite its wide array of utility, the molecular details of transient protein association to the lipid surfaces decorated with such chelator lipids remains poorly understood. In this study, we explore the kinetics of protein-liposome association across a wide concentration range using stopped-flow fluorescence. The fluorescence of histidine-tagged protein containing an intrinsic fluorophore (superfolder green fluorescent protein, SfGFP) was quenched upon binding to Ni-NTA-modified liposomes containing the quencher Dabsyl-PE lipids. Stopped-flow fluorescence reveals a complex, multiexponential binding behavior with a fast (kobs ∼ 10-20 s-1) phase and slower (kobs < 4 s-1) phase. Interestingly, the observed rates for the slower phase increase initially under low concentrations but start decreasing once a critical concentration is reached. Despite differences in the binding time scales, we observe that the trend of decreasing rates is reproducible irrespective of the chelator lipid doping level, protein surface charge, or lipid composition. Consideration of the protein footprint and membrane surface area occupancy leads us to conclude that the multiphasic binding behavior is reflective of protein binding via two distinct binding conformations. We propose that preliminary steps in protein association involve binding of a sterically occlusive side-on conformation followed by reorganization that leads to an end-on conformation with increased packing density. These results are important for the improvement of histidine-tag-based immobilization strategies and offer mechanistic insight into intermediates preceding membrane bending driven by protein crowding.
Collapse
|
8
|
Leitner MG, Thallmair V, Wilke BU, Neubert V, Kronimus Y, Halaszovich CR, Oliver D. The N-terminal homology (ENTH) domain of Epsin 1 is a sensitive reporter of physiological PI(4,5)P 2 dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:433-442. [PMID: 30670192 DOI: 10.1016/j.bbalip.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 08/04/2018] [Indexed: 11/15/2022]
Abstract
Phospholipase Cβ (PLCβ)-induced depletion of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) transduces a plethora of signals into cellular responses. Importance and diversity of PI(4,5)P2-dependent processes led to strong need for biosensors of physiological PI(4,5)P2 dynamics applicable in live-cell experiments. Membrane PI(4,5)P2 can be monitored with fluorescently-labelled phosphoinositide (PI) binding domains that associate to the membrane depending on PI(4,5)P2 levels. The pleckstrin homology domain of PLCδ1 (PLCδ1-PH) and the C-terminus of tubby protein (tubbyCT) are two such sensors widely used to study PI(4,5)P2 signaling. However, certain limitations apply to both: PLCδ1-PH binds cytoplasmic inositol-1,4,5-trisphosphate (IP3) produced from PI(4,5)P2 through PLCβ, and tubbyCT responses do not faithfully report on PLCβ-dependent PI(4,5)P2 dynamics. In searching for an improved biosensor, we fused N-terminal homology domain of Epsin1 (ENTH) to GFP and examined use of this construct as genetically-encoded biosensor for PI(4,5)P2 dynamics in living cells. We utilized recombinant tools to manipulate PI or Gq protein-coupled receptors (GqPCR) to stimulate PLCβ signaling and characterized PI binding properties of ENTH-GFP with total internal reflection (TIRF) and confocal microscopy. ENTH-GFP specifically recognized membrane PI(4,5)P2 without interacting with IP3, as demonstrated by dialysis of cells with the messenger through a patch pipette. Utilizing Ci-VSP to titrate PI(4,5)P2 levels, we found that ENTH-GFP had low PI(4,5)P2 affinity. Accordingly, ENTH-GFP was highly sensitive to PLCβ-dependent PI(4,5)P2 depletion, and in contrast to PLCδ1-PH, overexpression of ENTH-GFP did not attenuate GqPCR signaling. Taken together, ENTH-GFP detects minute changes of PI(4,5)P2 levels and provides an important complementation of experimentally useful reporters of PI(4,5)P2 dynamics in physiological pathways.
Collapse
Affiliation(s)
- Michael G Leitner
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Bettina U Wilke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Valentin Neubert
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Yannick Kronimus
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University, Germany; Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| |
Collapse
|
9
|
Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorg Med Chem Lett 2017; 27:420-426. [DOI: 10.1016/j.bmcl.2016.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/24/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
|
10
|
A High-Throughput Fluorometric Assay for Lipid-Protein Binding. Methods Enzymol 2017. [PMID: 28063486 DOI: 10.1016/bs.mie.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An increasing number of intracellular and extracellular proteins are shown to interact with membrane lipids under physiological conditions. For rapid and robust quantitative measurement of lipid-protein interaction, we developed a sensitive fluorescence quenching-based assay that is universally applicable to all proteins and lipids. The assay employs fluorescence protein (FP)-tagged proteins whose fluorescence emission intensity is decreased when they bind vesicles containing quenching lipids. This simple assay can be performed with a fluorescence plate reader or a spectrofluorometer and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows a rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid-binding proteins, and high-throughput screening of molecules that modulate their membrane binding.
Collapse
|
11
|
Mondal S, Rakshit A, Pal S, Datta A. Cell Permeable Ratiometric Fluorescent Sensors for Imaging Phosphoinositides. ACS Chem Biol 2016; 11:1834-43. [PMID: 27082310 DOI: 10.1021/acschembio.6b00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoinositides are critical cell-signal mediators present on the plasma membrane. The dynamic change of phosphoinositide concentrations on the membrane including clustering and declustering mediates signal transduction. The importance of phosphoinositides is scored by the fact that they participate in almost all cell-signaling events, and a defect in phosphoinositide metabolism is linked to multiple diseases including cancer, bipolar disorder, and type-2 diabetes. Optical sensors for visualizing phosphoinositide distribution can provide information on phosphoinositide dynamics. This exercise will ultimately afford a handle into understanding and manipulating cell-signaling processes. The major requirement in phosphoinositide sensor development is a selective, cell permeable probe that can quantify phosphoinositides. To address this requirement, we have developed short peptide-based ratiometric fluorescent sensors for imaging phosphoinositides. The sensors afford a selective response toward two crucial signaling phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-4-phosphate (PI4P), over other anionic membrane phospholipids and soluble inositol phosphates. Dissociation constant values indicate up to 4 times higher probe affinity toward PI(4,5)P2 when compared to PI4P. Significantly, the sensors are readily cell-permeable and enter cells within 15 min of incubation as indicated by multiphoton excitation confocal microscopy. Furthermore, the sensors light up signaling phosphoinositides present both on the cell membrane and on organelle membranes near the perinuclear space, opening avenues for quantifying and monitoring phosphoinositide signaling.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ananya Rakshit
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Suranjana Pal
- Department
of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ankona Datta
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
12
|
Sheng R, Jung DJ, Silkov A, Kim H, Singaram I, Wang ZG, Xin Y, Kim E, Park MJ, Thiagarajan-Rosenkranz P, Smrt S, Honig B, Baek K, Ryu S, Lorieau J, Kim YM, Cho W. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J Biol Chem 2016; 291:17639-50. [PMID: 27334919 DOI: 10.1074/jbc.m116.720284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain.
Collapse
Affiliation(s)
- Ren Sheng
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Da-Jung Jung
- the Division of Integrative Biosciences and Biotechnology and
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 11032, and
| | - Hyunjin Kim
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Indira Singaram
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Zhi-Gang Wang
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Yao Xin
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Eui Kim
- the Division of Integrative Biosciences and Biotechnology and
| | - Mi-Jeong Park
- the Division of Integrative Biosciences and Biotechnology and
| | | | - Sean Smrt
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 11032, and
| | - Kwanghee Baek
- the Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Korea
| | - Sungho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Justin Lorieau
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - You-Me Kim
- the Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea,
| | - Wonhwa Cho
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, the Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
13
|
Abstract
Membrane-protein interaction plays key roles in a wide variety of biological processes. To facilitate rapid and sensitive measurement of membrane binding of soluble proteins, we developed a fluorescence-based quantitative assay that is universally applicable to all proteins. This fluorescence-quenching assay employs fluorescence protein (FP)-tagged proteins whose fluorescence intensity is greatly decreased when they bind vesicles containing synthetic lipid dark quenchers, such as N-dimethylaminoazobenzenesulfonylphosphatidylethanolamine (dabsyl-PE). This simple assay can be performed with either a spectrofluorometer or a plate reader and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains and proteins, and also high-throughput screening of small molecules that modulate membrane binding of proteins.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hyunjin Kim
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yusi Hu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
14
|
Jiang L, Zhao X, Zheng C, Li F, Maclean JL, Chen F, Swami A, Qian H, Zhu J, Ge L. The quantitative detection of the uptake and intracellular fate of albumin nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra01683e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little has been investigated about the intracellular fate of organic nanoparticles (NPs), which is important for the safety and drug delivery efficiency of NPs. In this work, the intracellular disassociation and hydrolysis of albumin NPs were detected based on FRET.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Xin Zhao
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
| | - Chunli Zheng
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Fang Li
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
- School of Pharmacy
| | | | - Fangcheng Chen
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Archana Swami
- Department of Anesthesia
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
- USA
| | - Hai Qian
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Jiabi Zhu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Liang Ge
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P.R. China
| |
Collapse
|
15
|
Tyson GH, Halavaty AS, Kim H, Geissler B, Agard M, Satchell KJ, Cho W, Anderson WF, Hauser AR. A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases. J Biol Chem 2014; 290:2919-37. [PMID: 25505182 DOI: 10.1074/jbc.m114.611251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.
Collapse
Affiliation(s)
| | - Andrei S Halavaty
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Hyunjin Kim
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | | | | | | | - Wonhwa Cho
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Wayne F Anderson
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Alan R Hauser
- From the Departments of Microbiology-Immunology, Medicine, and
| |
Collapse
|
16
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Stahelin RV, Scott JL, Frick CT. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 2014; 182:3-18. [PMID: 24556335 DOI: 10.1016/j.chemphyslip.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022]
Abstract
Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Cary T Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|